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For convenience, this document gathers together nearly all the online doc for 
the Control System Toolbox in PDF format for printing. This document does 
not include Getting Started with the Control System Toolbox, which is available 
in both printed and PDF format.
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The Control System Toolbox offers extensive tools to manipulate and analyze 
linear time-invariant (LTI) models. It supports both continuous- and 
discrete-time systems. Systems can be single-input/single-output (SISO) or 
multiple-input/multiple-output (MIMO). In addition, you can store several LTI 
models in an array under a single variable name. See Chapter 4, “Arrays of LTI 
Models” for information on LTI arrays.

This section introduces key concepts about the MATLAB representation of LTI 
models, including LTI objects, precedence rules for operations, and an analogy 
between LTI systems and matrices. In addition, it summarizes the basic 
commands you can use on LTI objects.

LTI Models
You can specify LTI models as:

• Transfer functions (TF), for example,

• Zero-pole-gain models (ZPK), for example,

• State-space models (SS), for example,

where A, B, C, and D are matrices of appropriate dimensions, x is the state 
vector, and u and y are the input and output vectors.

• Frequency response data (FRD) models

FRD models consist of sampled measurements of a system’s frequency 
response. For example, you can store experimentally collected frequency 
response data in an FRD. 

P s( ) s 2+
s2 s 10+ +
---------------------------=

H z( )   2 z 0.5–( )
z z 0.1+( )
-------------------------     z2 z 1+ +( )

z 0.2+( ) z 0.1+( )
---------------------------------------------   =

xd
td

------ Ax Bu+=

y Cx Du+=
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Using LTI Models in the Control System Toolbox
You can manipulate TF, SS, and ZPK models using the arithmetic and model 
interconnection operations described in Chapter 3, “Operations on LTI Models” 
and analyze them using the model analysis functions, such as bode and step. 
FRD models can be manipulated and analyzed in much the same way you 
analyze the other model types, but analysis is restricted to frequency-domain 
methods. 

Using a variety of design techniques, you can design compensators for systems 
specified with TF, ZPK, SS, and FRD models. These techniques include root 
locus analysis, pole placement, LQG optimal control, and frequency domain 
loop-shaping. For FRD models, you can either: 

• Obtain an identified TF, SS, or ZPK model using system identification 
techniques.

• Use frequency-domain analysis techniques. 

Other Uses of FRD Models
FRD models are unique model types available in the Control System Toolbox 
collection of LTI model types, in that they don’t have a parametric 
representation. In addition to the standard operations you may perform on 
FRD models, you can also use them to: 

• Perform frequency-domain analysis on systems with nonlinearities using 
describing functions.

• Validate identified models against experimental frequency response data.

LTI Objects
Depending on the type of model you use, the data for your model may consist 
of a simple numerator/denominator pair for SISO transfer functions, four 
matrices for state-space models, and multiple sets of zeros and poles for MIMO 
zero-pole-gain models or frequency and response vectors for FRD models. For 
convenience, the Control System Toolbox provides customized data structures 
(LTI objects) for each type of model. These are called the TF, ZPK, SS, and FRD 
objects. These four LTI objects encapsulate the model data and enable you to 
manipulate LTI systems as single entities rather than collections of data 
vectors or matrices. 
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Creating an LTI Object: An Example
An LTI object of the type TF, ZPK, SS, or FRD is created whenever you invoke 
the corresponding constructor function, tf, zpk, ss, or frd. For example,

P = tf([1 2],[1 1 10])

creates a TF object, P, that stores the numerator and denominator coefficients 
of the transfer function

See “Creating LTI Models” on page 2-8 for methods for creating all of the LTI 
object types.

LTI Properties and Methods
The LTI object implementation relies on MATLAB object-oriented 
programming capabilities. Objects are MATLAB structures with an additional 
flag indicating their class (TF, ZPK, SS, or FRD for LTI objects) and have 
pre-defined fields called object properties. For LTI objects, these properties 
include the model data, sample time, delay times, input or output names, and 
input or output groups (see “LTI Properties” on page 2-25 for details). The 
functions that operate on a particular object are called the object methods. 
These may include customized versions of simple operations such as addition 
or multiplication. For example, 

P = tf([1 2],[1 1 10])
Q = 2 + P

performs transfer function addition.

The object-specific versions of such standard operations are called overloaded 
operations. For more details on objects, methods, and object-oriented 
programming, see Chapter 14, “Classes and Objects” in Using MATLAB. For 
details on operations on LTI objects, see Chapter 3, “Operations on LTI 
Models.”

P s( ) s 2+
s2 s 10+ +
---------------------------=

Q s( ) 2 P s( )+
2s2 3s 22+ +

s2 s 10+ +
-----------------------------------= =



2-5

Precedence Rules
Operations like addition and commands like feedback operate on more than 
one LTI model at a time. If these LTI models are represented as LTI objects of 
different types (for example, the first operand is TF and the second operand is 
SS), it is not obvious what type (for example, TF or SS) the resulting model 
should be. Such type conflicts are resolved by precedence rules. Specifically, TF, 
ZPK, SS, and FRD objects are ranked according to the precedence hierarchy.

Thus ZPK takes precedence over TF, SS takes precedence over both TF and 
ZPK, and FRD takes precedence over all three. In other words, any operation 
involving two or more LTI models produces:

• An FRD object if at least one operand is an FRD object

• An SS object if no operand is an FRD object and at least one operand is an 
SS object

• A ZPK object if no operand is an FRD or SS object and at least one is an ZPK 
object

• A TF object only if all operands are TF objects

Operations on systems of different types work as follows: the resulting type is 
determined by the precedence rules, and all operands are first converted to this 
type before performing the operation.

Viewing LTI Systems As Matrices
In the frequency domain, an LTI system is represented by the linear input/
output map

This map is characterized by its transfer matrix H, a function of either the 
Laplace or Z-transform variable. The transfer matrix H maps inputs to 
outputs, so there are as many columns as inputs and as many rows as outputs.

If you think of LTI systems in terms of (transfer) matrices, certain basic 
operations on LTI systems are naturally expressed with a matrix-like syntax. 
For example, the parallel connection of two LTI systems sys1 and sys2 can be 
expressed as

FRD > SS > ZPK > TF

y Hu=
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sys = sys1 + sys2

because parallel connection amounts to adding the transfer matrices. 
Similarly, subsystems of a given LTI model sys can be extracted using 
matrix-like subscripting. For instance,

sys(3,1:2)

provides the I/O relation between the first two inputs (column indices) and the 
third output (row index), which is consistent with

 

for .

Command Summary
The next two tables give an overview of the main commands you can apply to 
LTI models.

Table 2-1:  Creating LTI Models

Command Description

drss Generate random discrete state-space model.

dss Create descriptor state-space model.

filt Create discrete filter with DSP convention.

frd Create an FRD model.

frdata Retrieve FRD model data.

get Query LTI model properties.

set Set LTI model properties.

rss Generate random continuous state-space model.

ss Create a state-space model.

y1

y2

y3

H 1 1,( ) H 2 1,( )
H 2 1,( ) H 2 2,( )
H 3 1,( ) H 3 2,( )

u1 u2=

y Hu=
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ssdata, dssdata Retrieve state-space data (respectively, descriptor 
state-space data).

tf Create a transfer function.

tfdata Retrieve transfer function data.

zpk Create a zero-pole-gain model.

zpkdata Retrieve zero-pole-gain data.

Table 2-2:  Converting LTI Models

Command Description

c2d Continuous- to discrete-time conversion.

d2c Discrete- to continuous-time conversion.

d2d Resampling of discrete-time models.

frd Conversion to an FRD model.

pade Padé approximation of input delays.

ss Conversion to state space.

tf Conversion to transfer function.

zpk Conversion to zero-pole-gain.

Table 2-1:  Creating LTI Models (Continued)

Command Description
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Creating LTI Models
The functions tf, zpk, ss, and frd create transfer function models, 
zero-pole-gain models, state-space models, and frequency response data 
models, respectively. These functions take the model data as input and produce 
TF, ZPK, SS, or FRD objects that store this data in a single MATLAB variable. 
This section shows how to create continuous or discrete, SISO or MIMO LTI 
models with tf, zpk, ss, and frd.

Note  You can only specify TF, ZPK, and SS models for systems whose 
transfer matrices have real-valued coefficients.

Transfer Function Models
This section explains how to specify continuous-time SISO and MIMO transfer 
function models. The specification of discrete-time transfer function models is 
a simple extension of the continuous-time case (see “Discrete-Time Models” on 
page 2-19). In this section you can also read about how to specify transfer 
functions consisting of pure gains. 

SISO Transfer Function Models
A continuous-time SISO transfer function

is characterized by its numerator  and denominator , both 
polynomials of the Laplace variable s. 

There are two ways to specify SISO transfer functions:

• Using the tf command

• As rational expressions in the Laplace variable s

To specify a SISO transfer function model  using the tf 
command, type

h = tf(num,den)

h s( ) n s( )
d s( )
-----------=

n s( ) d s( )

h s( ) n s( ) d s( )⁄=
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where num and den are row vectors listing the coefficients of the polynomials 
 and , respectively, when these polynomials are ordered in descending 

powers of s. The resulting variable h is a TF object containing the numerator 
and denominator data.

For example, you can create the transfer function  by 
typing

h = tf([1 0],[1 2 10])

MATLAB responds with

Transfer function:
 s

--------------
s^2 + 2 s + 10

Note the customized display used for TF objects.

You can also specify transfer functions as rational expressions in the Laplace 
variable s by: 

1 Defining the variable s as a special TF model

s = tf('s');

2 Entering your transfer function as a rational expression in s 

For example, once s is defined with tf as in 1,

H = s/(s^2 + 2*s +10);

produces the same transfer function as 

h = tf([1 0],[1 2 10]);

Note  You need only define the variable s as a TF model once. All of the 
subsequent models you create using rational expressions of s are specified as 
TF objects, unless you convert the variable s to ZPK. See “Model Conversion” 
on page 2-39 for more information.

n s( ) d s( )

h s( ) s s2 2s 10+ +( )⁄=
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MIMO Transfer Function Models
MIMO transfer functions are two-dimensional arrays of elementary SISO 
transfer functions. There are several ways to specify MIMO transfer function 
models, including:

• Concatenation of SISO transfer function models

• Using tf with cell array arguments 

Consider the rational transfer matrix

.

You can specify  by concatenation of its SISO entries. For instance,

h11 = tf([1 –1],[1 1]);
h21 = tf([1 2],[1 4 5]);

or, equivalently, 

s = tf('s')
h11 = (s–1)/(s+1);
h21 = (s+2)/(s^2+4*s+5); 

can be concatenated to form .

H = [h11; h21]

This syntax mimics standard matrix concatenation and tends to be easier and 
more readable for MIMO systems with many inputs and/or outputs. See “Model 
Interconnection Functions” on page 3-16 for more details on concatenation 
operations for LTI systems.

Alternatively, to define MIMO transfer functions using tf, you need two cell 
arrays (say, N and D) to represent the sets of numerator and denominator 
polynomials, respectively. See Chapter 13, “Structures and Cell Arrays” in 
Using MATLAB for more details on cell arrays. 

For example, for the rational transfer matrix , the two cell arrays N and D 
should contain the row-vector representations of the polynomial entries of

H s( )

s 1–
s 1+
------------

s 2+
s2 4s 5+ +
----------------------------

=

H s( )

H s( )

H s( )
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You can specify this MIMO transfer matrix  by typing

N = {[1 –1];[1 2]}; % cell array for N(s)
D = {[1 1];[1 4 5]}; % cell array for D(s)
H = tf(N,D)

MATLAB responds with

Transfer function from input to output...
      s – 1
 #1:  -----
      s + 1
 
          s + 2
 #2:  -------------
      s^2 + 4 s + 5

Notice that both N and D have the same dimensions as H. For a general MIMO 
transfer matrix , the cell array entries N{i,j} and D{i,j} should be 
row-vector representations of the numerator and denominator of , the 

 entry of the transfer matrix .

Pure Gains
You can use tf with only one argument to specify simple gains or gain matrices 
as TF objects. For example,

G = tf([1 0;2 1])

produces the gain matrix

while

E = tf

creates an empty transfer function.

N s( ) s 1–

s 2+
      = D s( ) s 1+

s2 4s 5+ +
=

H s( )

H s( )
Hij s( )

ijth H s( )

G 1 0
2 1

=
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Zero-Pole-Gain Models
This section explains how to specify continuous-time SISO and MIMO 
zero-pole-gain models. The specification for discrete-time zero-pole-gain 
models is a simple extension of the continuous-time case. See “Discrete-Time 
Models” on page 2-19.

SISO Zero-Pole-Gain Models
Continuous-time SISO zero-pole-gain models are of the form

where  is a real-valued scalar (the gain), and ,...,  and ,...,  are the 
real or complex conjugate pairs of zeros and poles of the transfer function . 
This model is closely related to the transfer function representation: the zeros 
are simply the numerator roots, and the poles, the denominator roots.

There are two ways to specify SISO zero-pole-gain models:

• Using the zpk command 

• As rational expressions in the Laplace variable s

The syntax to specify ZPK models directly using zpk is

h = zpk(z,p,k)

where z and p are the vectors of zeros and poles, and k is the gain. This 
produces a ZPK object h that encapsulates the z, p, and k data. For example, 
typing

h = zpk(0, [1–i 1+i 2], –2)

produces

Zero/pole/gain:
 –2 s
--------------------
(s–2) (s^2 – 2s + 2)

You can also specify zero-pole-gain models as rational expressions in the 
Laplace variable s by: 

h s( ) k
s z1–( ) ... s zm–( )
s p1–( ) ... s pn–( )

-------------------------------------------------=

k z1 zm p1 pn
h s( )
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1 Defining the variable s as a ZPK model

s = zpk('s')

2 Entering the transfer function as a rational expression in s. 

For example, once s is defined with zpk,

H = –2s/((s – 2)*(s^2 + 2*s + 2));

returns the same ZPK model as 

h = zpk([0], [2 –1–i –1+i ], –2);

Note  You need only define the ZPK variable s once. All subsequent rational 
expressions of s will be ZPK models, unless you convert the variable s to TF. 
See “Model Conversion” on page 2-39 for more information on conversion to 
other model types.

MIMO Zero-Pole-Gain Models
Just as with TF models, you can also specify a MIMO ZPK model by 
concatenation of its SISO entries (see “Model Interconnection Functions” on 
page 3-16).

You can also use the command zpk to specify MIMO ZPK models. The syntax 
to create a p-by-m MIMO zero-pole-gain model using zpk is

H = zpk(Z,P,K)

where

• Z is the p-by-m cell array of zeros (Z{i,j} = zeros of )

• P is the p-by-m cell array of poles (P{i,j} = poles of )

• K is the p-by-m matrix of gains (K(i,j) = gain of )

For example, typing

Z = {[],–5;[1–i 1+i] []};

P = {0,[–1 –1];[1 2 3],[]};

Hij s( )
Hij s( )

Hij s( )
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K = [–1 3;2 0];

H = zpk(Z,P,K)

creates the two-input/two-output zero-pole-gain model

Notice that you use [] as a place-holder in Z (or P) when the corresponding 
entry of  has no zeros (or poles). 

State-Space Models
State-space models rely on linear differential or difference equations to 
describe the system dynamics. Continuous-time models are of the form

where x is the state vector and u and y are the input and output vectors. Such 
models may arise from the equations of physics, from state-space 
identification, or by state-space realization of the system transfer function.

Use the command ss to create state-space models

sys = ss(A,B,C,D)

For a model with Nx states, Ny outputs, and Nu inputs

• A is an Nx-by-Nx real-valued matrix.

• B is an Nx-by-Nu real-valued matrix.

• C is an Ny-by-Nx real-valued matrix.

• D is an Ny-by-Nu real-valued matrix.

This produces an SS object sys that stores the state-space matrices 
. For models with a zero D matrix, you can use D = 0 (zero) as a 

shorthand for a zero matrix of the appropriate dimensions.

H s( )

1–
s

------   3 s 5+( )

s 1+( )2
--------------------

2 s2 2s– 2+( )
s 1–( ) s 2–( ) s 3–( )

---------------------------------------------------   0

=

H s( )

xd
td

------ Ax Bu+=

y Cx Du+=

A B C and D, , ,
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As an illustration, consider the following simple model of an electric motor.

where  is the angular displacement of the rotor and  the driving current. The 
relation between the input current  and the angular velocity  
is described by the state-space equations

where

This model is specified by typing

sys = ss([0 1;–5 –2],[0;3],[0 1],0)

to which MATLAB responds

a = 
                        x1           x2
           x1            0      1.00000
           x2     –5.00000     –2.00000

b = 
                        u1
           x1            0
           x2      3.00000

c = 
                        x1           x2
           y1            0      1.00000

d = 
                        u1
           y1            0

d2θ
t2d

---------- 2 θd
td

------ 5θ+ + 3I=

θ I
u I= y dθ dt⁄=

xd
td

------ Ax Bu+=

y Cx=

x
θ
θd
td

------
= A 0 1

5– 2–
= B 0

3
= C 0 1=
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In addition to the A, B, C, and D matrices, the display of state-space models 
includes state names, input names, and output names. Default names (here, 
x1, x2, u1, and y1) are displayed whenever you leave these unspecified. See 
“LTI Properties” on page 2-25 for more information on how to specify state, 
input, or output names. 

Descriptor State-Space Models 
Descriptor state-space (DSS) models are a generalization of the standard 
state-space models discussed above. They are of the form

The Control System Toolbox supports only descriptor systems with a 
nonsingular  matrix. While such models have an equivalent explicit form

it is often desirable to work with the descriptor form when the  matrix is 
poorly conditioned with respect to inversion.

The function dss is the counterpart of ss for descriptor state-space models. 
Specifically, 

sys = dss(A,B,C,D,E)

creates a continuous-time DSS model with matrix data A,B,C,D,E. For 
example, consider the dynamical model

with vector  of angular velocities. If the inertia matrix  is poorly conditioned 
with respect to inversion, you can specify this system as a descriptor model by

sys = dss(–F,eye(n),eye(n),0,J)  % n = length of vector 

E xd
td

------ Ax Bu+=

y Cx Du+=

E

xd
td

------ E 1– A( )x E 1– B( )u+=

y Cx Du+=

E

Jdω
dt
-------- Fω+ T=

y ω=

ω J

ω
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Frequency Response Data (FRD) Models 
In some instances, you may only have sampled frequency response data, rather 
than a transfer function or state-space model for the system you want to 
analyze or control. For information on frequency response analysis of linear 
systems, see Chapter 8 of [1].

For example, suppose the frequency response function for the SISO system you 
want to model is G(w). Suppose, in addition, that you perform an experiment 
to evaluate G(w) at a fixed set of frequencies, . You can do this by 
driving the system with a sequence of sinusoids at each of these frequencies, as 
depicted below.

Here  is the input frequency of each sinusoid, i = 1 ... n, and G(w) = 
. The steady state output response of this system satisfies

A frequency response data (FRD) object is a model form you can use to store 
frequency response data (complex frequency response, along with a 
corresponding vector of frequency points) that you obtain either through 
simulations or experimentally. In this example, the frequency response data is 
obtained from the set of response pairs: . 

Once you store your data in an FRD model, you can treat it as an LTI model, 
and manipulate an FRD model in most of the same ways you manipulate TF, 
SS, and ZPK models. 

The basic syntax for creating a SISO FRD model is

sys = frd(response,frequencies,units)

where 

• frequencies is a real vector of length Nf.

w1 w2 … wn, , ,

witsin
G(w) = 

yi t( )

wi
G w( ) j G w( )∠( )exp

yi t( ) G wi( ) wit G wi( )∠+( )   i;sin 1…n= =

G wi( ) wi( , ){ } i, 1…n=
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• response is a vector of length Nf of complex frequency response values for 
these frequencies.

• units is an optional string for the units of frequency: either ’rad/s’ (default) 
or ’Hz’

For example, the MAT-file LTIexamples.mat contains a frequency vector freq, 
and a corresponding complex frequency response data vector respG. To load 
this frequency-domain data and construct an FRD model, type

load LTIexamples
sys = frd(respG,freq)

Continuous-time frequency response with 1 output and 1 input
at 5 frequency points.

From input 1 to: 
Frequency(rad/s)        output 1     
----------------        --------     
        1 –0.812505 –0.000312i
        2 –0.092593 –0.462963i
        4 –0.075781 –0.001625i
        5 –0.043735 –0.000390i

The syntax for creating a MIMO FRD model is the same as for the SISO case, 
except that response is a p-by-m-by-Nf multidimensional array, where p is the 
number of outputs, m is the number of inputs, and Nf is the number of 
frequency data points (the length of frequency). 

The following table summarizes the complex-valued response data format for 
FRD models.

Table 2-3:  Data Format for the Argument response in FRD Models

Model Form Response Data Format

SISO model Vector of length Nf for which response(i) is the 
frequency response at the frequency frequency(i)
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Discrete-Time Models
Creating discrete-time models is very much like creating continuous-time 
models, except that you must also specify a sampling period or sample time for 
discrete-time models. The sample time value should be scalar and expressed in 
seconds. You can also use the value –1 to leave the sample time unspecified.

To specify discrete-time LTI models using tf, zpk, ss, or frd, simply append 
the desired sample time value Ts to the list of inputs.

sys1 = tf(num,den,Ts)
sys2 = zpk(z,p,k,Ts)
sys3 = ss(a,b,c,d,Ts)
sys4 = frd(response,frequency,Ts)

For example,

h = tf([1 –1],[1 –0.5],0.1)

creates the discrete-time transfer function  with 
sample time 0.1 seconds, and 

sys = ss(A,B,C,D,0.5)

specifies the discrete-time state-space model

with sampling period 0.5 second. The vectors  denote the 
values of the state, input, and output vectors at the nth sample. 

 MIMO model 
with Ny outputs 
and Nu inputs

Ny-by-Nu-by-Nf multidimensional array for which 
response(i,j,k) specifies the frequency response 
from input j to output i at frequency frequency(k)

S1-by-...-by-Sn 
array of models 
with Ny outputs 
and Nu inputs

Ny-by-Nu-by-S1-by-...-by-Sn multidimensional array, 
for which response(i,j,k,:) specifies the array of 
frequency response data from input j to output i at 
frequency frequency(k)

Table 2-3:  Data Format for the Argument response in FRD Models (Continued)

Model Form Response Data Format

h z( ) z 1–( ) z 0.5–( )⁄=

x n 1+[ ] Ax n[ ] Bu n[ ]+=

y n[ ] Cx n[ ] Du n[ ]+=

x n[ ] u n[ ] y n[ ], ,
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By convention, the sample time of continuous-time models is Ts = 0. Setting 
Ts = –1 leaves the sample time of a discrete-time model unspecified. For 
example,

h = tf([1 –0.2],[1 0.3],–1)

produces

Transfer function:
z – 0.2
-------
z + 0.3
 
Sampling time: unspecified

Note  Do not simply omit Ts in this case. This would make h a 
continuous-time transfer function.

If you forget to specify the sample time when creating your model, you can still 
set it to the correct value by reassigning the LTI property Ts. See “Sample 
Time” on page 2-33 for more information on setting this property.

Discrete-Time TF and ZPK Models
You can specify discrete-time TF and ZPK models using tf and zpk as indicated 
above. Alternatively, it is often convenient to specify such models by:

1 Defining the variable z as a particular discrete-time TF or ZPK model with 
the appropriate sample time

2 Entering your TF or ZPK model directly as a rational expression in z.

This approach parallels the procedure for specifying continuous-time TF or 
ZPK models using rational expressions. This procedure is described in “SISO 
Transfer Function Models” on page 2-8 and “SISO Zero-Pole-Gain Models” on 
page 2-12.

For example,

z = tf('z', 0.1);
H = (z+2)/(z^2 + 0.6*z + 0.9);
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creates the same TF model as 

H = tf([1 2], [1 0.6 0.9], 0.1);

Similarly,

z = zpk('z', 0.1);
H = [z/(z+0.1)/(z+0.2) ; (z^2+0.2*z+0.1)/(z^2+0.2*z+0.01)]

produces the single-input, two-output ZPK model

Zero/pole/gain from input to output...
             z
 #1:  ---------------
      (z+0.1) (z+0.2)
 
      (z^2 + 0.2z + 0.1)
 #2:  ------------------
          (z+0.1)^2
 
Sampling time: 0.1

Note that:

• The syntax z = tf('z') is equivalent to z = tf('z',–1) and leaves the 
sample time unspecified. The same applies to z = zpk('z').

• Once you have defined z as indicated above, any rational expressions in z 
creates a discrete-time model of the same type and with the same sample 
time as z.

Discrete Transfer Functions in DSP Format
In digital signal processing (DSP), it is customary to write discrete transfer 
functions as rational expressions in  and to order the numerator and 
denominator coefficients in ascending powers of . For example, the 
numerator and denominator of

would be specified as the row vectors [1 0.5] and [1 2 3], respectively. When 
the numerator and denominator have different degrees, this convention 

z 1–

z 1–

H z 1–( ) 1 0.5z 1–+
1 2z 1– 3z 2–+ +
----------------------------------------=
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clashes with the “descending powers of ” convention assumed by tf (see 
“Transfer Function Models” on page 2-8, or tf). For example,

h = tf([1 0.5],[1 2 3])

produces the transfer function

which differs from  by a factor .

To avoid such convention clashes, the Control System Toolbox offers a separate 
function filt dedicated to the DSP-like specification of transfer functions. Its 
syntax is

h = filt(num,den)

for discrete transfer functions with unspecified sample time, and

h = filt(num,den,Ts)

to further specify the sample time Ts. This function creates TF objects just like 
tf, but expects num and den to list the numerator and denominator coefficients 
in ascending powers of . For example, typing

h = filt([1 0.5],[1 2 3])

produces

Transfer function:
   1 + 0.5 z^–1
-------------------
1 + 2 z^–1 + 3 z^–2
 
Sampling time: unspecified

You can also use filt to specify MIMO transfer functions in . Just as for tf, 
the input arguments num and den are then cell arrays of row vectors of 
appropriate dimensions (see “Transfer Function Models” on page 2-8 for 
details). Note that each row vector should comply with the “ascending powers 
of ” convention.

z

z 0.5+
z2 2z 3+ +
----------------------------

H z 1–( ) z

z 1–

z 1–

z 1–
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Data Retrieval
The functions tf, zpk, ss, and frd pack the model data and sample time in a 
single LTI object. Conversely, the following commands provide convenient data 
retrieval for any type of TF, SS, or ZPK model sys, or FRD model sysfr.

[num,den,Ts] = tfdata(sys)  % Ts = sample time
[z,p,k,Ts] = zpkdata(sys)
[a,b,c,d,Ts] = ssdata(sys)
[a,b,c,d,e,Ts] = dssdata(sys)
[response,frequency,Ts] = frdata(sysfr)

Note that: 

• sys can be any type of LTI object, except an FRD model

• sysfr, the input argument to frdata, can only be an FRD model

You can use any variable names you want in the output argument list of any of 
these functions. The ones listed here correspond to the model property names 
described in Tables 2-2 – 2.5.

The output arguments num and den assigned to tfdata, and z and p assigned 
to zpkdata, are cell arrays, even in the SISO case. These cell arrays have as 
many rows as outputs, as many columns as inputs, and their ijth entry 
specifies the transfer function from the jth input to the ith output. For example,

H = [tf([1 –1],[1 2 10]) , tf(1,[1 0])]

creates the one-output/two-input transfer function

Typing 

[num,den] = tfdata(H);
num{1,1}, den{1,1}

displays the coefficients of the numerator and denominator of the first input 
channel.

ans =
     0     1    –1
ans =

H s( ) s 1–
s2 2s 10+ +
-------------------------------   1

s
---=
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     1     2    10

Note that the same result is obtained using

H.num{1,1}, H.den{1,1}

See “Direct Property Referencing” on page 2-31 for more information about this 
syntax.

To obtain the numerator and denominator of SISO systems directly as row 
vectors, use the syntax

[num,den,Ts] = tfdata(sys,'v')

For example, typing

sys = tf([1 3],[1 2 5]);
[num,den] = tfdata(sys,'v')

produces

num =
 
     0     1     3

den =
 
     1     2     5

Similarly,

[z,p,k,Ts] = zpkdata(sys,'v')

returns the zeros, z, and the poles, p, as vectors for SISO systems.
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LTI Properties
The previous section shows how to create LTI objects that encapsulate the 
model data and sample time. You also have the option to attribute additional 
information, such as the input names or notes on the model history, to LTI 
objects. This section gives a complete overview of the LTI properties, i.e., the 
various pieces of information that can be attached to the TF, ZPK, SS, and FRD 
objects. Type help ltiprops for online help on available LTI properties.

From a data structure standpoint, the LTI properties are the various fields in 
the TF, ZPK, SS, and FRD objects. These fields have names (the property 
names) and are assigned values (the property values). We distinguish between 
generic properties, common to all four types of LTI objects, and model-specific 
properties that pertain only to one particular type of model.

Generic Properties
The generic properties are those shared by all four types of LTI models (TF, 
ZPK, SS, and FRD objects). They are listed in the table below.

Table 2-4:  Generic LTI Properties

Property Name Description Property Value

ioDelay I/O delay(s) Matrix

InputDelay Input delay(s) Vector

InputGroup Input channel groups Cell array

InputName Input channel names Cell vector of strings

Notes Notes on the model history Text

OutputDelay Output delay(s) Vector

OutputGroup Output channel groups Cell array

OutputName Output channel names Cell vector of strings

Ts Sample time Scalar

Userdata Additional data Arbitrary



2 LTI Models

2-26

The sample time property Ts keeps track of the sample time (in seconds) of 
discrete-time systems. By convention, Ts is 0 (zero) for continuous-time 
systems, and Ts is –1 for discrete-time systems with unspecified sample time. 
Ts is always a scalar, even for MIMO systems. 

The InputDelay, OutputDelay, and ioDelay properties allow you to specify 
time delays in the input or output channels, or for each input/output pair. Their 
default value is zero (no delay). See “Time Delays” on page 2-42 for details on 
modeling delays.

The InputName and OutputName properties enable you to give names to the 
individual input and output channels. The value of each of these properties is 
a cell vector of strings with as many cells as inputs or outputs. For example, 
the OutputName property is set to

{ 'temperature' ; 'pressure' }

for a system with two outputs labeled temperature and pressure. The default 
value is a cell of empty strings.

Using the InputGroup and OutputGroup properties of LTI objects, you can 
create different groups of input or output channels, and assign names to the 
groups. For example, you may want to designate the first four inputs of a 
five-input model as controls, and the last input as noise. See “Input Groups 
and Output Groups” on page 2-36 for more information.

Finally, Notes and Userdata are available to store additional information on 
the model. The Notes property is dedicated to any text you want to supply with 
your model, while the Userdata property can accommodate arbitrary 
user-supplied data. They are both empty by default.

For more detailed information on how to use LTI properties, see “Additional 
Insight into LTI Properties” on page 2-32.

Model-Specific Properties
The remaining LTI properties are specific to one of the four model types (TF, 
ZPK, SS, or FRD). For single LTI models, these are summarized in the 
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following four tables. The property values differ for LTI arrays. See set for 
more information on these values.

Table 2-5:  TF-Specific Properties

Property Name Description Property Value

den Denominator(s) Real cell array of row vectors

num Numerator(s) Real cell array of row vectors

Variable Transfer function 
variable

String 's', 'p', 'z', 'q', or 
'z^–1'

Table 2-6:  ZPK-Specific Properties

Property Name Description Property Value

k Gains Two-dimensional real matrix

p Poles Cell array of column vectors

Variable Transfer function 
variable

String 's', 'p', 'z', 'q', or 
'z^–1'

z Zeros Cell array of column vectors

Table 2-7:  SS-Specific Properties

Property Name Description Property Value

a State matrix 2-D real matrix

b Input-to-state matrix 2-D real matrix

c State-to-output matrix 2-D real matrix

d Feedthrough matrix 2-D real matrix

e Descriptor  matrix 2-D real matrix

Nx Number of states Scalar integer

StateName State names Cell vector of strings

A

B

C

D

E
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Most of these properties are dedicated to storing the model data. Note that the 
 matrix is set to [] (the empty matrix) for standard state-space models, a 

storage-efficient shorthand for the true value .

The Variable property is only an attribute of TF and ZPK objects. This 
property defines the frequency variable of transfer functions. The default 
values are 's' (Laplace variable ) in continuous time and 'z' (Z-transform 
variable ) in discrete time. Alternative choices include 'p' (equivalent to ) 
and 'q' or 'z^–1' for the reciprocal  of the  variable. The influence of 
the variable choice is mostly limited to the display of TF or ZPK models. One 
exception is the specification of discrete-time transfer functions with tf (see tf 
for details).

Note that tf produces the same result as filt when the Variable property is 
set to 'z^–1' or 'q'.

Finally, the StateName property is analogous to the InputName and OutputName 
properties and keeps track of the state names in state-space models.

Setting LTI Properties
There are three ways to specify LTI property values:

• You can set properties when creating LTI models with tf, zpk, ss, or frd. 

• You can set or modify the properties of an existing LTI model with set. 

• You can also set property values using structure-like assignments.

This section discusses the first two options. See “Direct Property Referencing” 
on page 2-31 for details on the third option. 

Table 2-8:  FRD-Specific Properties

Property Name Description Property Value

Frequency Frequency data points Real-valued vector

ResponseData Frequency response Complex-valued 
multidimensional array

Units Units for frequency String 'rad/s' or 'Hz'

E
E I=

s
z s

q z 1–= z
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The function set for LTI objects follows the same syntax as its Handle 
Graphics counterpart. Specifically, each property is updated by a pair of 
arguments 

PropertyName,PropertyValue

where 

• PropertyName is a string specifying the property name. You can type the 
property name without regard for the case (upper or lower) of the letters in 
the name. Actually, you need only type any abbreviation of the property 
name that uniquely identifies the property. For example, 'user' is sufficient 
to refer to the Userdata property.

• PropertyValue is the value to assign to the property (see set for details on 
admissible property values).

As an illustration, consider the following simple SISO model for a heating 
system with an input delay of 0.3 seconds, an input called “energy,” and an 
output called “temperature.” 

Figure 2-1:  A Simple Heater Model

You can use a TF object to represent this delay system, and specify the time 
delay, the input and output names, and the model history by setting the 
corresponding LTI properties. You can either set these properties directly 
when you create the LTI model with tf, or by using the set command. 

For example, you can specify the delay directly when you create the model, and 
then use the set command to assign InputName, OutputName, and Notes to 
sys. 

sys = tf(1,[1 1],'Inputdelay',0.3);
set(sys,'inputname','energy','outputname','temperature',...

'notes','A simple heater model')

1
s 1+
------------e 0.3s–

delay

energy temperature
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Finally, you can also use the set command to obtain a listing of all settable 
properties for a given LTI model type, along with valid values for these 
properties. For the transfer function sys created above

set(sys)

produces

num:  Ny-by-Nu cell of row vectors (Nu = no. of inputs)
den:  Ny-by-Nu cell of row vectors (Ny = no. of outputs)
Variable:  [ 's' | 'p' | 'z' | 'z^-1' | 'q' ]
Ts:  scalar
InputDelay:  Nu-by-1 vector
OutputDelay:  Ny-by-1 vector
ioDelay:  Ny-by-Nu array (I/O delays)
InputName:  Nu-by-1 cell array of strings
OutputName:  Ny-by-1 cell array of strings
InputGroup:  M-by-2 cell array if M input groups
OutputGroup:  P-by-2 cell array if P output groups
Notes:  array or cell array of strings
UserData:  arbitrary

Accessing Property Values Using get
You access the property values of an LTI model sys with get. The syntax is

PropertyValue = get(sys,PropertyName)

where the string PropertyName is either the full property name, or any 
abbreviation with enough characters to identify the property uniquely. For 
example, typing

h = tf(100,[1 5 100],'inputname','voltage',...
                        'outputn','current',...
                        'notes','A simple circuit')
get(h,'notes')

produces

ans = 

    'A simple circuit'
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To display all of the properties of an LTI model sys (and their values), use the 
syntax get(sys). In this example,

get(h)

produces

num = {[0 0 100]}
den = {[1 5 100]}
Variable = 's'
Ts = 0
InputDelay = 0
OutputDelay = 0
ioDelay = 0
InputName = {'voltage'}
OutputName = {'current'}
InputGroup = {0x2 cell}
OutputGroup = {0x2 cell}
Notes = {'A simple circuit'}
UserData = []

Notice that default (output) values have been assigned to any LTI properties in 
this list that you have not specified. 

Finally, you can also access property values using direct structure-like 
referencing. This topic is explained in the next section.

Direct Property Referencing
An alternative way to query/modify property values is by structure-like 
referencing. Recall that LTI objects are basic MATLAB structures except for 
the additional flag that marks them as TF, ZPK, SS, or FRD objects (see “LTI 
Objects” on page 2-3). The field names for LTI objects are the property names, 
so you can retrieve or modify property values with the structure-like syntax.

PropertyValue = sys.PropertyName% gets property value
sys.PropertyName = PropertyValue% sets property value

These commands are respectively equivalent to

PropertyValue = get(sys,'PropertyName')
set(sys,'PropertyName',PropertyValue)

For example, type 
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sys = ss(1,2,3,4,'InputName','u');
sys.a

and you get the value of the property “a” for the state-space model sys.

ans =
     1

Similarly,

sys.a = –1;

resets the state transition matrix for sys to –1.

Unlike standard MATLAB structures, you do not need to type the entire field 
name or use upper-case characters. You only need to type the minimum 
number of characters sufficient to identify the property name uniquely. Thus 
either of the commands

sys.InputName
sys.inputn

produces

ans = 

    'u'

Any valid syntax for structures extends to LTI objects. For example, given the 
TF model 

h = tf(1,[1,0],'variable','p');

you can reset the numerator to  by typing

h.num{1} = [1 2];

or equivalently, with

h.num{1}(2) = 2;

Additional Insight into LTI Properties
By reading this section, you can learn more about using the Ts, InputName, 
OutputName, InputGroup, and OutputGroup LTI properties through a set of 
examples. For basic information on Notes and Userdata, see “Generic 

h p( ) 1 p⁄=

p 2+
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Properties” on page 2-25. For detailed information on the use of InputDelay, 
OutputDelay, and ioDelay, see “Time Delays” on page 2-42. 

Sample Time 
The sample time property Ts is used to specify the sampling period (in seconds) 
for either discrete-time or discretized continuous-time LTI models. Suppose 
you want to specify

as a discrete-time transfer function model with a sampling period of 0.5 
seconds. To do this, type

h = tf([1 0],[2 1 1],0.5);

This sets the Ts property to the value 0.5, as is confirmed by

h.Ts

ans =
    0.5000

For continuous-time models, the sample time property Ts is 0 by convention. 
For example, type 

h = tf(1,[1 0]);
get(h,'Ts')

ans =
     0

To leave the sample time of a discrete-time LTI model unspecified, set Ts to . 
For example, 

h = tf(1,[1 –1],–1)

produces

Transfer function:
  1
-----
z – 1
 

H z( ) z
2z2 z 1+ +
----------------------------=

1–
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Sampling time: unspecified

The same result is obtained by using the Variable property.

h = tf(1,[1 –1],'var','z')

In operations that combine several discrete-time models, all specified sample 
times must be identical, and the resulting discrete-time model inherits this 
common sample time. The sample time of the resultant model is unspecified if 
all operands have unspecified sample times. With this inheritance rule for Ts, 
the following two models are equivalent.

tf(0.1,[1 –1],0.1) + tf(1,[1 0.5],–1)

and

tf(0.1,[1 –1],0.1) + tf(1,[1 0.5],0.1)

Note that 

tf(0.1,[1 –1],0.1) + tf(1,[1 0.5],0.5)

returns an error message.

??? Error using ==> lti/plus
In SYS1+SYS2, both models must have the same sample time.

Caution. Resetting the sample time of a continuous-time LTI model sys from 
zero to a nonzero value does not discretize the original model sys. The 
command

set(sys,'Ts',0.1)

only affects the Ts property and does not alter the remaining model data. Use 
c2d and d2c to perform continuous-to-discrete and discrete-to-continuous 
conversions. For example, use

sysd = c2d(sys,0.1)

to discretize a continuous system sys at a 10Hz sampling rate.

Use d2d to change the sample time of a discrete-time system and resample it.

Input Names and Output Names
You can use the InputName and OutputName properties (in short, I/O names) to 
assign names to any or all of the input and output channels in your LTI model.
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For example, you can create a SISO model with input thrust, output 
velocity, and transfer function  by typing

h = tf(1,[1 10]);
set(h,'inputname','thrust','outputname','velocity',...

 'variable','p')

Equivalently, you can set these properties directly by typing

h = tf(1,[1 10],'inputname','thrust',...
'outputname','velocity',...

 'variable','p')

This produces

Transfer function from input "thrust" to output "velocity":
  1
------
p + 10

Note how the display reflects the input and output names and the variable 
selection.

In the MIMO case, use cell vectors of strings to specify input or output channel 
names. For example, type

num = {3 , [1 2]};
den = {[1 10] , [1 0]};
H = tf(num,den);   % H(s) has one output and two inputs

set(H,'inputname',{'temperature' ; 'pressure'})

The specified input names appear in the display of H.

Transfer function from input "temperature" to output:
  3
------
s + 10
 
Transfer function from input "pressure" to output:
s + 2
-----
  s

H p( ) 1 p 10+( )⁄=
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To leave certain names undefined, use the empty string '' as in

H = tf(num,den,'inputname',{ 'temperature' ; '' })

Input Groups and Output Groups
In many applications, you may want to create several (distinct or intersecting) 
groups of input or output channels and name these groups. For example, you 
may want to label one set of input channels as noise and another set as 
controls.

To see how input and output groups (I/O groups) work: 

1 Create a random state-space model with one state, three inputs, and three 
outputs.

2 Assign the first two inputs to a group named controls, the first output to a 
group named temperature, and the last two outputs to a group named 
measurements. 

To do this, type

h = rss(1,3,3);
set(h, 'InputGroup',{[1 2] 'controls'})
set(h, 'OutputGroup', {[1] 'temperature'; [2 3] 'measurements'})
h

and MATLAB returns a state-space model of the following form.

a = 
                        x1
           x1     –0.64884
 
 
b = 
                        u1           u2           u3
           x1      0.12533            0            0
 
 
c = 
                        x1
           y1       1.1909
           y2       1.1892
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           y3            0
 
 
d = 
                        u1           u2           u3
           y1      0.32729            0 –0.1364
           y2            0            0            0
           y3            0       2.1832            0
 
I/O Groups:                        
   Group Name     I/O    Channel(s)
    controls       I        1,2    
  temperature      O         1     
  measurements     O        2,3    
                                   
Continuous-time model.

Notice that the middle column of the I/O group listing indicates whether the 
group is an input group (I) or an output group (O).

In general, to specify M input groups (or output groups), you need an M-by-2 
cell array organized as follows.

Figure 2-2:  Two Column Cell Array

When you specify the cell array for input (or output) groups, keep in mind:

• Each row of this cell array designates a different input (output) group. 

Vectors of Channel Indices Group Names

{ Channels for Group 1 , Name for Group 1;

Channels for Group 2 , Name for Group 2;

Channels for Group M , Name for Group M }
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• You can add input (or output) groups by appending rows to the cell array.

• You can choose not to assign any of the group names when you assign the 
groups, and leave off the second column of this array. In that case, 

- Empty strings are assigned to the group names by default.

- If you append rows to a cell array with no group names assigned, you have 
to assign empty strings ('') to the group names.

For example,

h.InputGroup = [h.InputGroup; {[3] 'disturbance'}];

adds another input group called disturbance to h.

You can use regular cell array syntax for accessing or modifying I/O group 
components. For example, to delete the first output group, temperature, type

h.OutputGroup(1,:) = []

ans = 
[1x2 double]    'measurements'

Similarly, you can add or delete channels from an existing input or output 
group. Recalling that input group channels are stored in the first column of the 
corresponding cell array, to add channel three to the input group controls, 
type

h.inputgroup{1,1} = [h.inputgroup{1,1} 3]

or, equivalently, 

h.inputgroup{1,1} = [1 2 3]
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Model Conversion
There are four LTI model types you can use with the Control System Toolbox: 
TF, ZPK, SS, and FRD. This section shows how to convert models from one type 
to the other.

Explicit Conversion
Model conversions are performed by tf, ss, zpk, and frd. Given any TF, SS, or 
ZPK model sys, the syntax for conversion to another model type is

Notice that FRD models can’t be converted to the other model types. In 
addition, you must also include a vector of frequencies (frequency) as an input 
argument when converting to an FRD model.

For example, you can convert the state-space model

sys = ss(–2,1,1,3)

to a zero-pole-gain model by typing

zpk(sys)

to which MATLAB responds

Zero/pole/gain:
3 (s+2.333)
-----------
   (s+2)

Note that the transfer function of a state-space model with data  is

 

for continuous-time models, and

sys = tf(sys) % Conversion to TF

sys = zpk(sys) % Conversion to ZPK

sys = ss(sys) % Conversion to SS

sys = frd(sys,frequency) % Conversion to FRD

A B C D, , ,( )

H s( ) D C sI A–( ) 1– B+=
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for discrete-time models.

Automatic Conversion 
Some algorithms operate only on one type of LTI model. For example, the 
algorithm for zero-order-hold discretization with c2d can only be performed on 
state-space models. Similarly, commands like tfdata expect one particular 
type of LTI models (TF). For convenience, such commands automatically 
convert LTI models to the appropriate or required model type. For example, in

sys = ss(0,1,1,0)
[num,den] = tfdata(sys)

tfdata first converts the state-space model sys to an equivalent transfer 
function in order to return numerator and denominator data.

Note that conversions to state-space models are not uniquely defined. For this 
reason, automatic conversions to state space are disabled when the result 
depends on the choice of state coordinates, for example, in commands like 
initial or kalman.

Caution About Model Conversions
When manipulating or converting LTI models, keep in mind that:

• The three LTI model types TF, ZPK, and SS, are not equally well-suited for 
numerical computations. In particular, the accuracy of computations using 
high-order transfer functions is often poor. Therefore, it is often preferable to 
work with the state-space representation. In addition, it is often beneficial to 
balance and scale state-space models using ssbal. You get this type of 
balancing automatically when you convert any TF or ZPK model to state 
space using ss.

• Conversions to the transfer function representation using tf may incur a 
loss of accuracy. As a result, the transfer function poles may noticeably differ 
from the poles of the original zero-pole-gain or state-space model.

• Conversions to state space are not uniquely defined in the SISO case, nor are 
they guaranteed to produce a minimal realization in the MIMO case. For a 
given state-space model sys, 

H z( ) D C zI A–( ) 1– B+=
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ss(tf(sys))

may return a model with different state-space matrices, or even a different 
number of states in the MIMO case. Therefore, if possible, it is best to avoid 
converting back and forth between state-space and other model types.
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Time Delays
Using the ioDelay, InputDelay, and OutputDelay properties of LTI objects, 
you can specify delays in both continuous- and discrete-time LTI models. With 
these properties, you can, for example, represent:

• LTI models with independent delays for each input/output pair. For 
example, the continuous-time model with transfer function

• State-space models with delayed inputs and/or delayed outputs. For 
example,

where  is the time delay between the input  and the state vector , 
and  is the time delay between  and the output .

You can assign the delay properties ioDelay, InputDelay, and OutputDelay 
either when first creating your model with the tf, zpk, ss, or frd constructors, 
or later with the set command (see “LTI Properties and Methods” on page 2-4 
for details).

Supported Functionality
Most analysis commands support time delays, including:

• All time and frequency response commands

• Conversions between model types

• Continuous-to-discrete conversions (c2d)

• Horizontal and vertical concatenation

• Series, parallel, and feedback interconnections of discrete-time models with 
delays

H s( )
e 0.1s – 2

s
---       e 0.3s – s 1+

s 10+
---------------

10  e 0.2s  – s 1–
s 5+
------------ 

=

x· t( ) Ax t( ) Bu t τ–( )+=

y t( ) Cx t θ–( ) Du t θ τ+( )–( )+=

τ u t( ) x t( )
θ x t( ) y t( )
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• Interconnections of continuous-time delay systems as long as the resulting 
transfer function from input  to output  is of the form  
where  is a rational function of 

• Padé approximation of time delays (pade)

Specifying Input/Output Delays
Using the ioDelay property, you can specify frequency-domain models with 
independent delays in each entry of the transfer function. In continuous time, 
such models have a transfer function of the form

where the ’s are rational functions of , and  is the time delay between 
input  and output . See “Specifying Delays in Discrete-Time Models” on page 
2-49 for details on the discrete-time counterpart. We collectively refer to the 
scalars  as the I/O delays.

The syntax to create  above is

H = tf(num,den,'ioDelay',Tau)

or

H = zpk(z,p,k,'ioDelay',Tau)

where 

• num, den (respectively, z, p, k) specify the rational part of the transfer 
function 

• Tau is the matrix of time delays for each I/O pair. That is, Tau(i,j) specifies 
the I/O delay  in seconds. Note that Tau and  should have the same 
row and column dimensions.

You can also use the ioDelay property in conjunction with state-space models, 
as in

sys = ss(A,B,C,D,'ioDelay',Tau)

j i sτij–( ) hij s( )exp
hij s( ) s

H s( )
e

sτ11–
h11 s( )   ...  e

sτ1m–
h1m s( )

:  :

e
sτp1–

hp1 s( )   ...  e
sτpm–

hpm s( )

sτij–( ) hij s( )exp[ ]= =

 hij s τij
j i

τij

H s( )

hij s( )[ ]
H s( )

τij H s( )
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This creates the LTI model with the following transfer function.

Here  is the  entry of

Note  State-space models with I/O delays have only a frequency-domain 
interpretation. They cannot, in general, be described by state-space equations 
with delayed inputs and outputs.

Distillation Column Example
This example is adapted from [2] and illustrates the use of I/O delays in process 
modeling. The process of interest is the distillation column depicted by the 
figure below. This column is used to separate a mix of methanol and water (the 
feed) into bottom products (mostly water) and a methanol-saturated distillate. 

H s( ) sτij–( ) rij s( )exp=

rij s( ) i j,( )

R s( ) D C sI A–( ) 1– B+=
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Figure 2-3:  Distillation Column

Schematically, the distillation process functions as follows:

• Steam flows into the reboiler and vaporizes the bottom liquid. This vapor is 
reinjected into the column and mixes with the feed 

• Methanol, being more volatile than water, tends to concentrate in the vapor 
moving upward. Meanwhile, water tends to flow downward and accumulate 
as the bottom liquid

• The vapor exiting at the top of the column is condensed by a flow of cooling 
water. Part of this condensed vapor is extracted as the distillate, and the rest 
of the condensate (the reflux) is sent back to the column.

• Part of the bottom liquid is collected from the reboiler as bottom products 
(waste).

The regulated output variables are:

• Percentage  of methanol in the distillate

• Percentage  of methanol in the bottom products.

Feed

Enriched vapor
Cooling water

Condensate

Reflux
Distillate 

Vapor

Steam flow

Reboiler

Bottom liquid Bottom products

XD

XB
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The goal is to maximize  by adjusting the reflux flow rate  and the steam 
flow rate  in the reboiler. 

To obtain a linearized model around the steady-state operating conditions, the 
transient responses to pulses in steam and reflux flow are fitted by first-order 
plus delay models. The resulting transfer function model is

Note the different time delays for each input/output pair.

You can specify this MIMO transfer function by typing

H = tf({12.8 –18.9;6.6 –19.4},...
{[16.7 1] [21 1];[10.9 1] [14.4 1]},...
'iodelay',[1 3;7 3],...
'inputname',{'R' , 'S'},...
'outputname',{'Xd' , 'Xb'})

The resulting TF model is displayed as

Transfer function from input "R" to output...
                     12.8
 Xd:  exp(–1*s) * ----------
                  16.7 s + 1
 
                     6.6
 Xb:  exp(–7*s) * ----------
                  10.9 s + 1
 
Transfer function from input "S" to output...

–18.9
 Xd:  exp(–3*s) * --------
                  21 s + 1
 

–19.4
 Xb:  exp(–3*s) * ----------
                  14.4 s + 1

XD R
S

XD s( )

XB s( )

12.8e 1s–

16.7e 1+
------------------------ 18.9e 3s–

–
21.0s 1+
-------------------------

6.6e 7s–

10.9s 1+
------------------------ 19.4e 3s–

–
14.4s 1+
-------------------------

R s( )
S s( )

=
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Specifying Delays on the Inputs or Outputs
While ideal for frequency-domain models with I/O delays, the ioDelay property 
is inadequate to capture delayed inputs or outputs in state-space models. For 
example, the two models

share the same transfer function

As a result, they cannot be distinguished using the ioDelay property (the I/O 
delay value is 0.1 seconds in both cases). Yet, these two models have different 
state trajectories since  and  are related by

Note that the 0.1 second delay is on the input in the first model, and on the 
output in the second model.

InputDelay and OutputDelay Properties
When the state trajectory is of interest, you should use the InputDelay and 
OutputDelay properties to distinguish between delays on the inputs and 
delays on the outputs in state-space models. For example, you can accurately 
specify the two models above by

M1 = ss(–1,1,1,0,'inputdelay',0.1)
M2 = ss(–1,1,1,0,'outputdelay',0.1)

In the MIMO case, you can specify a different delay for each input (or output) 
channel by assigning a vector value to InputDelay (or OutputDelay). For 
example, 

sys = ss(A,[B1 B2],[C1;C2],[D11 D12;D21 D22])
sys.inputdelay = [0.1 0]
sys.outputdelay = [0.2 0.3]

creates the two-input, two-output model

M1( ) x· t( ) x– t( ) u t 0.1–( )+=

y t( ) x t( )=



 M2( ) z· t( ) z– t( ) u t( )+=

y t( ) z t 0.1–( )=



h s( ) e 0.1s –

s 1+
----------------=

x t( ) z t( )

z t( ) x t 0.1–( )=



2 LTI Models

2-48

You can also use the InputDelay and OutputDelay properties to conveniently 
specify input or output delays in TF, ZPK, or FRD models. For example, you 
can create the transfer function

by typing

s = tf('s');
H = [1/s ; 2/(s+1)]; % rational part
H.inputdelay = 0.1

The resulting model is displayed as

Transfer function from input to output...
                    1
 #1:  exp(–0.1*s) * -
                    s
 
                      2
 #2:  exp(–0.1*s) * -----
                    s + 1

By comparison, to produce an equivalent transfer function using the ioDelay 
property, you would need to type

H = [1/s ; 2/(s+1)];
H.iodelay = [0.1 ; 0.1];

Notice that the 0.1 second delay is repeated twice in the I/O delay matrix. More 
generally, for a TF, ZPK, or FRD model with input delays  and 
output delays , the equivalent I/O delay matrix is

x· t( ) Ax t( ) B1u1 t 0.1–( ) + B2u2 t( )+=

y1 t 0.2+( ) C1x t( ) D11u1 t 0.1–( ) D12u2 t( )+ +=

y2 t 0.3+( ) C2x t( ) D21u1 t 0.1–( ) D22u2 t( )+ +=

H s( )

1
s
---

2
s 1+
------------

=   e 0.1s –

α1 ... αm, ,[ ]
β1 ... βp, ,[ ]
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Specifying Delays in Discrete-Time Models
You can also use the ioDelay, InputDelay, and OutputDelay properties to 
specify delays in discrete-time LTI models. You specify time delays in 
discrete-time models with integer multiples of the sampling period. The integer 
k you supply for the time delay of a discrete-time model specifies a time delay 
of k sampling periods. Such a delay contributes a factor  to the transfer 
function.

For example,

h = tf(1,[1 0.5 0.2],0.1,'inputdelay',3)

produces the discrete-time transfer function

Transfer function:
                 1
z^(–3) * -----------------
         z^2 + 0.5 z + 0.2
 
Sampling time: 0.1

Notice the z^(–3) factor reflecting the three-sampling-period delay on the 
input.

Mapping Discrete-Time Delays to Poles at the Origin
Since discrete-time delays are equivalent to additional poles at , they can 
be easily absorbed into the transfer function denominator or the state-space 
equations. For example, the transfer function of the delayed integrator

is

α1 β1+   α2 β1+    ...   αm β1+

α1 β2+ α2 β2+ αm β2+

: : :
α1 βp+ α2 βp+    ...   αm βp+

z k–

z 0=

y k 1+[ ] y k[ ] u k 2–[ ]+=



2 LTI Models

2-50

You can specify this model either as the first-order transfer function  
with a delay of two sampling periods on the input

Ts = 1; % sampling period
H1 = tf(1,[1 –1],Ts,'inputdelay',2)

or directly as a third-order transfer function:

H2 = tf(1,[1 –1 0 0],Ts) % 1/(z^3–z^2)

While these two models are mathematically equivalent, H1 is a more efficient 
representation both in terms of storage and subsequent computations. 

When necessary, you can map all discrete-time delays to poles at the origin 
using the command delay2z. For example, 

H2 = delay2z(H1)

absorbs the input delay in H1 into the transfer function denominator to produce 
the third-order transfer function

Transfer function:
    1
---------
z^3 – z^2
 
Sampling time: 1

Note that 

H2.inputdelay

now returns 0 (zero).

Retrieving Information About Delays
There are several ways to retrieve time delay information from a given LTI 
model sys:

• Use property display commands to inspect the values of the ioDelay, 
InputDelay, and OutputDelay properties. For example,

H z( ) z 2–

z 1–
------------=

1 z 1–( )⁄
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sys.iodelay
get(sys,'inputdelay')

• Use the helper function hasdelay to determine if sys has any delay at all. 
The syntax is 

hasdelay(sys)

which returns 1 (true) if sys has any delay, and 0 (false) otherwise

• Use the function totaldelay to determine the total delay between each input 
and each output (cumulative contribution of the ioDelay, InputDelay, and 
OutputDelay properties). Type help totaldelay or see the Reference pages 
for details.

Padé Approximation of Time Delays
The function pade computes rational approximations of time delays in 
continuous-time LTI models. The syntax is

sysx = pade(sys,n)

where sys is a continuous-time model with delays, and the integer n specifies 
the Padé approximation order. The resulting LTI model sysx is of the same 
type as sys, but is delay free.

For models with multiple delays or a mix of input, output, and I/O delays, you 
can use the syntax

sysx = pade(sys,ni,no,nio)

where the vectors ni and no, and the matrix nio specify independent 
approximation orders for each input, output, and I/O delay, respectively. Set 
ni=[] if there are no input delays, and similarly for no and nio.

For example, consider the “Distillation Column Example” on page 2-44. The 
two-input, two-output transfer function in this example is

H s( )

12.8e 1s–

16.7e 1+
------------------------ 18.9e 3s–

–
21.0s 1+
-------------------------

6.6e 7s–

10.9s 1+
------------------------ 19.4e 3s–

–
14.4s 1+
-------------------------

=
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To compute a Padé approximation of H(s) using:

• A first-order approximation for the 1 second and 3 second delays

• A second-order approximation for the 7 second delay,

type

pade(H,[],[],[1 1;2 1])

where H is the TF representation of  defined in the distillation column 
example. This command produces a rational transfer function.

Transfer function from input "R" to output...
–12.8 s + 25.6

 Xd:  ---------------------
      16.7 s^2 + 34.4 s + 2
 
             6.6 s^2 – 5.657 s + 1.616
 Xb:  ---------------------------------------
      10.9 s^3 + 10.34 s^2 + 3.527 s + 0.2449
 
Transfer function from input "S" to output...
          18.9 s – 12.6
 Xd:  ----------------------
      21 s^2 + 15 s + 0.6667
 
            19.4 s – 12.93
 Xb:  --------------------------
      14.4 s^2 + 10.6 s + 0.6667

H s( )
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Simulink Block for LTI Systems
You can incorporate LTI objects into Simulink diagrams using the LTI System 
block shown below.

The LTI System block can be accessed either by typing

ltiblock

at the MATLAB prompt or by selecting Control System Toolbox from the 
Blocksets and Toolboxes section of the main Simulink library.

The LTI System block consists of the dialog box shown on the right in the figure 
above. In the editable text box labeled LTI system variable, enter either the 
variable name of an LTI object located in the MATLAB workspace (for 
example, sys) or a MATLAB expression that evaluates to an LTI object (for 
example, tf(1,[1 1])). The LTI System block accepts both continuous and 
discrete LTI objects in either transfer function, zero-pole-gain, or state-space 
form. Simulink converts the model to its state-space equivalent prior to 
initializing the simulation.

Use the editable text box labeled Initial states to enter an initial state vector 
for state-space models. The concept of “initial state” is not well-defined for 

Double-click on the block in your 
Simulink diagram to display or 
modify model information.

This mask is linked to an LTI 
block in a Simulink diagram.
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transfer functions or zero-pole-gain models, as it depends on the choice of state 
coordinates used by the realization algorithm. As a result, you cannot enter 
nonzero initial states when you supply TF or ZPK models to LTI blocks in a 
Simulink diagram.

Note:  

• For MIMO systems, the input delays stored in the LTI object must be either 
all positive or all zero. 

• LTI blocks in a Simulink diagram cannot be used for FRD models or LTI 
arrays.
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You can perform basic matrix operations such as addition, multiplication, or 
concatenation on LTI models. Such operations are “overloaded,” which means 
that they use the same syntax as they do for matrices, but are adapted so as to 
apply to the LTI model context. These overloaded operations and their 
interpretation in this context are discussed in this chapter. You can read about 
discretization methods in this chapter as well. The following topics and 
operations on LTI models are covered in this chapter:

• Precedence and Property Inheritance

• Extracting and Modifying Subsystems

• Arithmetic Operations

• Model Interconnection Functions

• Continuous/Discrete-Time Conversions of LTI Models

• Resampling of Discrete-Time Models

These operations can be applied to LTI models of different types. As a result, 
before discussing operations on LTI models, we discuss model type precedence 
and how LTI model properties are inherited when models are combined using 
these operations. To read about how you can apply these operations to arrays 
of LTI models, see “Operations on LTI Arrays” on page 4-24. To read about the 
available functions with which you can analyze LTI models, see Chapter 5, 
“Model Analysis Tools,”
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Precedence and Property Inheritance
You can apply operations to LTI models of different types. The resulting type 
is then determined by the rules discussed in “Precedence Rules” on page 2-5. 
For example, if sys1 is a transfer function and sys2 is a state-space model, 
then the result of their addition

sys = sys1 + sys2

is a state-space model, since state-space models have precedence over transfer 
function models.

To supersede the precedence rules and force the result of an operation to be a 
given type, for example, a transfer function (TF), you can either: 

• Convert all operands to TF before performing the operation

• Convert the result to TF after performing the operation 

Suppose, in the above example, you want to compute the transfer function of 
sys. You can either use a priori conversion of the second operand

sys = sys1 + tf(sys2);

or a posteriori conversion of the result

sys = tf(sys1 + sys2)

Note  These alternatives are not equivalent numerically; computations are 
carried out on transfer functions in the first case, and on state-space models in 
the second case. 

Another issue is property inheritance, that is, how the operand property values 
are passed on to the result of the operation. While inheritance is partly 
operation-dependent, some general rules are summarized below:

• In operations combining discrete-time LTI models, all models must have 
identical or unspecified (sys.Ts = –1) sample times. Models resulting from 
such operations inherit the specified sample time, if there is one. 

• Most operations ignore the Notes and Userdata properties.
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• In general, when two LTI models sys1 and sys2 are combined using 
operations such as +, *, [,], [;], append, and feedback, the resulting model 
inherits its I/O names and I/O groups from sys1 and sys2. However, 
conflicting I/O names or I/O groups are not inherited. For example, the 
InputName property for sys1 + sys2 is left unspecified if sys1 and sys2 have 
different InputName property values. 

• A model resulting from operations on TF or ZPK models inherits its 
Variable property value from the operands. Conflicts are resolved according 
the following rules:

- For continuous-time models, 'p' has precedence over 's'.

- For discrete-time models, 'z^–1' has precedence over 'q' and 'z', while 
'q' has precedence over 'z'.
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Extracting and Modifying Subsystems
Subsystems relate subsets of the inputs and outputs of a system. The transfer 
matrix of a subsystem is a submatrix of the system transfer matrix. For 
example, if sys is a system with two inputs, three outputs, and I/O relation

then  gives the relation between the first input and third output.

Accordingly, use matrix-like subindexing to extract this subsystem.

SubSys = sys(3,1)

The resulting subsystem SubSys is an LTI model of the same type as sys, with 
its sample time, time delay, I/O name, and I/O group property values inherited 
from sys.

For example, if sys has an input group named controls consisting of channels 
one, two, and three, then SubSys also has an input group named controls with 
the first channel of SubSys assigned to it.

If sys is a state-space model with matrices a, b, c, d, the subsystem sys(3,1) 
is a state-space model with data a, b(:,1), c(3,:), d(3,1). Note the following 
rules when extracting subystems:

• In the expression sys(3,1), the first index selects the output channel while 
the second index selects the input channel. 

• When extracting a subsystem from a given state-space model, the resulting 
state-space model may not be minimal. Use the command sminreal to 
eliminate unnecessary states in the subsystem.

You can use similar syntax to modify the LTI model sys. For example,

sys(3,1) = NewSubSys

redefines the I/O relation between the first input and third output, provided 
NewSubSys is a SISO LTI model. 

y Hu=

H 3 1,( )

y3 H 3,1( ) u1=



3 Operations on LTI Models

3-6

The following rules apply when modifying LTI models:

• sys, the LTI model that has had a portion reassigned, retains its original 
model type (TF, ZPK, SS, or FRD) regardless of the model type of NewSubSys. 

• Subsystem assignment does not reassign any I/O names or I/O group names 
of NewSubSys that are already assigned to NewSubSys. 

• Reassigning parts of a MIMO state-space model generally increases its 
order.

• If NewSubSys is an FRD model, then sys must also be an FRD model. 
Furthermore, their frequencies must match.

Other standard matrix subindexing extends to LTI objects as well. For 
example,

sys(3,1:2)

extracts the subsystem mapping the first two inputs to the third output.

sys(:,1)

selects the first input and all outputs, and

sys([1 3],:)

extracts a subsystem with the same inputs, but only the first and third outputs.

For example, consider the two-input/two-output transfer function

.

To extract the transfer function  from the first input to the first output, 
type 

T(1,1) 

Transfer function:
   1
-------
s + 0.1

T s( )

1
s 0.1+
-----------------  0

s 1–
s2 2s 2+ +
----------------------------  1

s
---

=

T11 s( )
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Next reassign  to  and modify the second input channel of T 
by typing

T(1,1) = tf(1,[1 0.5]);
T(:,2) = [ 1 ; tf(0.4,[1 0]) ]

Transfer function from input 1 to output...
         1
 #1:  -------
      s + 0.5
 
          s – 1
 #2:  -------------
      s^2 + 2 s + 2
 
Transfer function from input 2 to output...
 #1:  1
 
      0.4
 #2:  ---
       s

Referencing FRD Models Through Frequencies
You can extract subsystems from FRD models, as you do with other LTI model 
types, by indexing into input and output (I/O) dimensions. You can also extract 
subsystems by indexing into the frequencies of an FRD model. 

To index into the frequencies of an FRD model, use the string ’Frequency’ (or 
any abbreviation, such as, ’freq’, as long as it does not conflict with existing 
I/O channel or group names) as a keyword. There are two ways you can specify 
FRD models using frequencies:

• Using integers to index into the frequency vector of the FRD model

• Using a Boolean (logical) expression to specify desired frequency points in an 
FRD model

For example, if sys is an FRD model with five frequencies, (e.g., 
sys.Frequency=[1 1.1 1.2 1.3 1.4]), then you can create a new FRD model 
sys2 by indexing into the frequencies of sys as follows.

sys2 = sys('frequency', 2:3);

T11 s( ) 1 s 0.5+( )⁄
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sys2.Frequency

ans =
    1.1000
    1.2000

displays the second and third entries in the frequency vector.

Similarly, you can use logical indexing into the frequencies. 

sys2 = sys('frequency',sys.Frequency >1.0 & sys.Frequency <1.15);
sys2.freq

ans =
    1.1000

You can also combine model extraction through frequencies with indexing into 
the I/O dimensions. For example, if sys is an FRD model with two inputs, two 
outputs, and frequency vector [2.1 4.2 5.3], with sys.Units specified in rad/
s, then 

sys2 = sys(1,2,'freq',1)

specifies sys2 as a SISO FRD model, with one frequency data point, 2.1 rad/s.

Referencing Channels by Name
You can also extract subsystems using I/O group or channel names. For 
example, if sys has an input group named noise, consisting of channels two, 
four, and five, then 

sys(1,'noise')

is equivalent to

sys(1,[2 4 5])

Similarly, if pressure is the name assigned to an output channel of the LTI 
model sys, then 

sys('pressure',1) = tf(1, [1 1])

reassigns the subsystem from the first input of sys to the output labeled 
pressure.
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You can reference a set of channels by input or output name by using a cell 
array of strings for the names. For example, if sys has one output channel 
named pressure and one named temperature, then these two output channels 
can be referenced using

sys({'pressure','temperature'})

Resizing LTI Systems
Resizing a system consists of adding or deleting inputs and/or outputs. To 
delete the first two inputs, simply type

sys(:,1:2) = []

In deletions, at least one of the row/column indexes should be the colon (:) 
selector.

To perform input/output augmentation, you can proceed by concatenation or 
subassignment. Given a system sys with a single input, you can add a second 
input using

sys = [sys,h];

or, equivalently, using 

sys(:,2) = h;

where h is any LTI model with one input, and the same number of outputs as 
sys. There is an important difference between these two options: while 
concatenation obeys the precedence rules (see page 2-5), subsystem assignment 
does not alter the model type. So, if sys and h are TF and SS objects, 
respectively, the first statement produces a state-space model, and the second 
statement produces a transfer function.

For state-space models, both concatenation and subsystem assignment 
increase the model order because they assume that sys and h have 
independent states. If you intend to keep the same state matrix and only 
update the input-to-state or state-to-output relations, use set instead and 
modify the corresponding state-space data directly. For example, 

sys = ss(a,b1,c,d1)
set(sys,'b',[b1 b2],'d',[d1 d2])
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adds a second input to the state-space model sys by appending the B and D 
matrices. You should simultaneously modify both matrices with a single set 
command. Indeed, the statements

sys.b = [b1 b2]

and

set(sys,'b',[b1 b2])

cause an error because they create invalid intermediate models in which the B 
and D matrices have inconsistent column dimensions.
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Arithmetic Operations
You can apply almost all arithmetic operations to LTI models, including those 
shown below.

Addition and Subtraction
Adding LTI models is equivalent to connecting them in parallel. Specifically, 
the LTI model 

sys = sys1 + sys2

Operation Description

+ Addition

 – Subtraction

* Multiplication

/ Right matrix divide

\ Left matrix divide

inv Matrix inversion

' Pertransposition

.' Transposition

^ Powers of an LTI model (as in s^2)
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represents the parallel interconnection shown below.

If sys1 and sys2 are two state-space models with data  and 
, the state-space data associated with sys1 + sys2 is

Scalar addition is also supported and behaves as follows: if sys1 is MIMO and 
sys2 is SISO, sys1 + sys2 produces a system with the same dimensions as 
sys1 whose ijth entry is sys1(i,j) + sys2.

Similarly, the subtraction of two LTI models

sys = sys1 – sys2

is depicted by the following block diagram.

sys1

sys2

u
+

+

sys

y1

y2

y

A1 B1 C1 D1, , ,
A2 B2 C2 D2, , ,

A1 0

0 A2

 ,
B1

B2

 , C1 C2  , D1 D2+

sys1

sys2

u y
+

–

sys

y1

y2
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Multiplication
Multiplication of two LTI models connects them in series. Specifically,

sys = sys1 * sys2

returns an LTI model sys for the series interconnection shown below.

Notice the reverse orders of sys1 and sys2 in the multiplication and block 
diagram. This is consistent with the way transfer matrices are combined in a 
series connection: if sys1 and sys2 have transfer matrices  and , then

For state-space models sys1 and sys2 with data  and 
, the state-space data associated with sys1*sys2 is

Finally, if sys1 is MIMO and sys2 is SISO, then sys1*sys2 or sys2*sys1 is 
interpreted as an entry-by-entry scalar multiplication and produces a system 
with the same dimensions as sys1, whose ijth entry is sys1(i,j)*sys2.

Inversion and Related Operations
Inversion of LTI models amounts to inverting the following input/output 
relationship.

This operation is defined only for square systems (that is, systems with as 
many inputs as outputs) and is performed using

inv(sys)

The resulting inverse model is of the same type as sys. Related operations 
include:

u y
v

sys2 sys1

H1 H2

y H1v H1 H2u( ) H1 H2×( ) u= = =

A1 B1 C1 D1, , ,
A2 B2 C2 D2, , ,

A1 B1C2

0 A2

 ,
B1D2

B2

 , C1  D1C2  , D1D2

y H u=   → u H 1– y=
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• Left division sys1\sys2, which is equivalent to inv(sys1)*sys2

• Right division sys1/sys2, which is equivalent to sys1*inv(sys2)

For a state-space model sys with data , inv(sys) is defined only 
when  is a square invertible matrix, in which case its state-space data is

Transposition 
You can transpose an LTI model sys using

sys.'

This is a literal operation with the following effect:

• For TF models (with input arguments, num and den), the cell arrays num and 
den are transposed.

• For ZPK models (with input arguments, z, p, and k), the cell arrays, z and p, 
and the matrix k are transposed.

• For SS models (with model data ), transposition produces the 
state-space model AT, CT, BT, DT.

• For FRD models (with complex frequency response matrix Response), the 
matrix of frequency response data at each frequency is transposed.

Pertransposition
For a continuous-time system with transfer function , the pertransposed 
system has the transfer function

The discrete-time counterpart is

Pertransposition of an LTI model sys is performed using

sys'

You can use pertransposition to obtain the Hermitian (conjugate) transpose of 
the frequency response of a given system. The frequency response of the 

A B C D, , ,
D

A BD 1– C ,– BD 1–  , D–
1– C , D 1–

A B C D, , ,

H s( )

G s( ) H s–( )[ ]T=

G z( ) H z 1–( )[ ]T
=
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pertranspose of , , is the Hermitian transpose of the 
frequency response of : . 

To obtain the Hermitian transpose of the frequency response of a system sys 
over a frequency range specified by the vector w, type

freqresp(sys', w);

H s( ) G s( ) H s–( )[ ]T=
H s( ) G jw( ) H jw( )H=
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Model Interconnection Functions
The Control System Toolbox provides a number of functions to help with the 
model building process. These include model interconnection functions to 
perform I/O concatenation ([,], [;], and append), general parallel and series 
connections (parallel and series), and feedback connections (feedback and 
lft). These functions are useful to model open- and closed-loop systems.

Concatenation of LTI Models
LTI model concatenation is done in a manner similar to the way you 
concatenate matrices in MATLAB, using

sys = [sys1 , sys2]% horizontal concatenation
sys = [sys1 ; sys2]% vertical concatenation

Interconnection Operator Description

[,] Concatenates horizontally

[;] Concatenates vertically 

append Appends models in a block diagonal 
configuration

augstate Augments the output by appending states

connect Forms an SS model from a block diagonal 
LTI object for an arbitrary interconnection 
matrix

feedback Forms the feedback interconnection of two 
models

lft Produces the LFT interconnection 
(Redheffer Star product) of two models

parallel Forms the generalized parallel connection 
of two models

series Forms the generalized series connection of 
two models
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sys = append(sys1,sys2)% block diagonal appending

In I/O terms, horizontal and vertical concatenation have the following 
block-diagram interpretations (with  and  denoting the transfer 
matrices of sys1 and sys2).

You can use concatenation as an easy way to create MIMO transfer functions 
or zero-pole-gain models. For example,

H = [ tf(1,[1 0]) 1 ; 0 tf([1 –1],[1 1]) ]

specifies

Use 

append(sys1,sys2)

H1 H2

H2

y
+

+

H1u1

u2

y H1 , H2
u1

u2

 =

Horizontal Concatenation

H2

H1

u

y1

y2

 
y1

y2

H1

H2

 u=

Vertical Concatenation

H s( )

1
s
---   1

0   s 1–
s 1+
------------

=
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to specify the block-decoupled LTI model interconnection.

See append for more information on this function. 

Feedback and Other Interconnection Functions
The following LTI model interconnection functions are useful for specifying 
closed- and open-loop model configurations: 

• feedback puts two LTI models with compatible dimensions in a feedback 
configuration. 

• series connects two LTI models in series.

• parallel connects two LTI models in parallel.

• lft performs the Redheffer star product on two LTI models.

• connect works with append to apply an arbitrary interconnection scheme to 
a set of LTI models.

For example, if sys1 has m inputs and p outputs, while sys2 has p inputs and 
m outputs, then the negative feedback configuration of these two LTI models

sys1

sys2

Appended Models

u1

u2

y1

y2

sys1 0
0 sys2

Transfer Function

sys1

sys2

–

+
u y
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is realized with

feedback(sys1,sys2)

This specifies the LTI model with m inputs and p outputs whose I/O map is

See the reference pages online for more information on feedback, series, 
parallel, lft, and connect.

I sys1 sys2⋅+( ) 1– sys1
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Continuous/Discrete Conversions of LTI Models
The function c2d discretizes continuous-time TF, SS, or ZPK models. 
Conversely, d2c converts discrete-time TF, SS, or ZPK models to continuous 
time. Several discretization/interpolation methods are supported, including 
zero-order hold (ZOH), first-order hold (FOH), Tustin approximation with or 
without frequency prewarping, and matched poles and zeros.

The syntax

sysd = c2d(sysc,Ts); % Ts = sampling period in seconds
sysc = d2c(sysd);

performs ZOH conversions by default. To use alternative conversion schemes, 
specify the desired method as an extra string input:

sysd = c2d(sysc,Ts,'foh');% use first-order hold
sysc = d2c(sysd,'tustin');% use Tustin approximation

The conversion methods and their limitations are discussed next.

Zero-Order Hold
Zero-order hold (ZOH) devices convert sampled signals to continuous-time 
signals for analyzing sampled continuous-time systems. The zero-order-hold 
discretization  of a continuous-time LTI model  is depicted in the 
following block diagram.

The ZOH device generates a continuous input signal u(t) by holding each 
sample value u[k] constant over one sample period.

Hd z( ) H s( )

H s( )u k[ ] y k[ ]
u t( ) y t( )

ZOH
Ts

Hd z( )

u t( ) u k[ ] ,= kTs t k 1+( )Ts≤ ≤
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The signal  is then fed to the continuous system , and the resulting 
output  is sampled every  seconds to produce . 

Conversely, given a discrete system , the d2c conversion produces a 
continuous system  whose ZOH discretization coincides with . This 
inverse operation has the following limitations:

• d2c cannot operate on LTI models with poles at  when the ZOH is used.

• Negative real poles in the  domain are mapped to pairs of complex poles in 
the  domain. As a result, the d2c conversion of a discrete system with 
negative real poles produces a continuous system with higher order.

The next example illustrates the behavior of d2c with real negative poles. 
Consider the following discrete-time ZPK model.

hd = zpk([],–0.5,1,0.1)

Zero/pole/gain:
   1
-------
(z+0.5)
 
Sampling time: 0.1

Use d2c to convert this model to continuous-time

hc = d2c(hd)

and you get a second-order model.

Zero/pole/gain:
   4.621 (s+149.3)
---------------------
(s^2 + 13.86s + 1035)

Discretize the model again

c2d(hc,0.1)  

and you get back the original discrete-time system (up to canceling the pole/
zero pair at z=–0.5):

Zero/pole/gain:
 (z+0.5)

u t( ) H s( )
y t( ) Ts y k[ ]

Hd z( )
H s( ) Hd z( )

z 0=

z
s
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---------
(z+0.5)^2
 
Sampling time: 0.1

First-Order Hold
First-order hold (FOH) differs from ZOH by the underlying hold mechanism. 
To turn the input samples  into a continuous input , FOH uses linear 
interpolation between samples.

This method is generally more accurate than ZOH for systems driven by 
smooth inputs. Due to causality constraints, this option is only available for 
c2d conversions, and not d2c conversions. 

Note  This FOH method differs from standard causal FOH and is more 
appropriately called triangle approximation (see [2], p. 151). It is also known 
as ramp-invariant approximation because it is distortion-free for ramp inputs.

Tustin Approximation
The Tustin or bilinear approximation uses the approximation

to relate s-domain and z-domain transfer functions. In c2d conversions, the 
discretization  of a continuous transfer function  is derived by

Similarly, the d2c conversion relies on the inverse correspondence

u k[ ] u t( )

u t( ) u k[ ]
t kTs–

Ts
------------------ u k 1+[ ] u k[ ]–( ) ,+= kTs t k 1+( )Ts≤ ≤

z e
sTs

1 sTs 2⁄+

1 sTs 2⁄–
--------------------------≈=

Hd z( ) H s( )

Hd z( ) H s’( ) , where= s’
2
Ts
------ z 1–

z 1+
------------=
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Tustin with Frequency Prewarping
This variation of the Tustin approximation uses the correspondence

This change of variable ensures the matching of the continuous- and 
discrete-time frequency responses at the frequency .

Matched Poles and Zeros
The matched pole-zero method applies only to SISO systems. The continuous 
and discretized systems have matching DC gains and their poles and zeros 
correspond in the transformation

See [2], p. 147 for more details.

Discretization of Systems with Delays
You can also use c2d to discretize SISO or MIMO continuous-time models with 
time delays. If Ts is the sampling period used for discretization:

• A delay of tau seconds in the continuous-time model is mapped to a delay of 
k sampling periods in the discretized model, where k = fix(tau/Ts).

• The residual fractional delay tau – k*Ts is absorbed into the coefficients of 
the discretized model (for the zero-order-hold and first-order-hold methods 
only).

For example, to discretize the transfer function

H s( ) Hd z’( ), where= z’
1 sTs 2⁄+

1 sTs 2⁄–
--------------------------=

Hd z( ) H s’( ) ,= s’
ω

ωTs 2⁄( )tan
--------------------------------- z 1–

z 1+
------------=

ω

H jω( ) Hd e
jωTs( )=

z e
sTs=

H s( ) e 0.25s– 10

s2 3s 10+ +
-------------------------------=
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using zero-order hold on the input, and a 10 Hz sampling rate, type

h = tf(10,[1 3 10],'inputdelay',0.25);
hd = c2d(h,0.1)

This produces the discrete-time transfer function

Transfer function:
         0.01187 z^2 + 0.06408 z + 0.009721
z^(–2) * ----------------------------------
             z^3 – 1.655 z^2 + 0.7408 z
 
Sampling time: 0.1

Here the input delay in  amounts to 2.5 times the sampling period of 0.1 
seconds. Accordingly, the discretized model hd inherits an input delay of two 
sampling periods, as confirmed by the value of hd.inputdelay. The residual 
half-period delay is factored into the coefficients of hd by the discretization 
algorithm.

The step responses of the continuous and discretized models are compared in 
the figure below. This plot was produced by the command

H s( )
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step(h,'--',hd,'-')

Note  The Tustin and matched pole/zero methods are accurate only for delays 
that are integer multiples of the sampling period. It is therefore preferable to 
use the zoh and foh discretization methods for models with delays.
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Resampling of Discrete-Time Models
You can resample a discrete-time TF, SS, or ZPK model sys1 by typing

sys2 = d2d(sys1,Ts)

The new sampling period Ts does not have to be an integer multiple of the 
original sampling period. For example, typing

h1 = tf([1 0.4],[1 –0.7],0.1);
h2 = d2d(h1,0.25);

resamples h1 at the sampling period of 0.25 seconds, rather than 0.1 seconds.

You can compare the step responses of h1 and h2 by typing

step(h1,'--',h2,'-')

The resulting plot is shown on the figure below (h1 is the dashed line).
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General Model Characteristics
General model characteristics include the model type, I/O dimensions, 
and continuous or discrete nature. Related commands are listed in the 
table below. These commands operate on continuous- or discrete-time 
LTI models or arrays of LTI models of any type.

This example illustrates the use of some of these commands. See the 
related reference pages for more details.

H = tf({1 [1 –1]},{[1 0.1] [1 2 10]})

Transfer function from input 1 to output:
   1
-------
s + 0.1

General Model Characteristics Commands

class Display model type ('tf', 'zpk', 'ss', or 'frd').

hasdelay Test true if LTI model has any type of delay. 

isa Test true if LTI model is of specified class.

isct Test true for continuous-time models.

isdt Test true for discrete-time models.

isempty Test true for empty LTI models.

isproper Test true for proper LTI models.

issiso Test true for SISO models.

ndims Display the number of model/array dimensions.

reshape Change the shape of an LTI array.

size Output/input/array dimensions. Used with special 
syntax, size also returns the number of state 
dimensions for state-space models, and the number 
of frequencies in an FRD model.
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Transfer function from input 2 to output:
    s – 1
--------------
s^2 + 2 s + 10

class(H)

ans =
tf

size(H)
Transfer function with 2 input(s) and 1 output(s).

[ny,nu] = size(H)% Note: ny = number of outputs

ny =
     1
 
nu =
     2

isct(H)% Is this system continuous?
 
ans =
     1

isdt(H)% Is this system discrete?
 
ans =

0
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Model Dynamics
The Control System Toolbox offers commands to determine the system 
poles, zeros, DC gain, norms, etc. You can apply these commands to 
single LTI models or LTI arrays. The following table gives an overview of 
these commands.

With the exception of  norm, these commands are not supported for 
FRD models. 

Here is an example of model analysis using some of these commands.

h = tf([4 8.4 30.8 60],[1 4.12 17.4 30.8 60])

Transfer function:
     4 s^3 + 8.4 s^2 + 30.8 s + 60
---------------------------------------
s^4 + 4.12 s^3 + 17.4 s^2 + 30.8 s + 60

pole(h)

ans =
–1.7971 + 2.2137i

Model Dynamics

covar Covariance of response to white noise.

damp Natural frequency and damping of system poles.

dcgain Low-frequency (DC) gain.

dsort Sort discrete-time poles by magnitude.

esort Sort continuous-time poles by real part.

norm Norms of LTI systems (  and ).

pole, eig System poles.

pzmap Pole/zero map.

zero System transmission zeros.

H2 L∞

L∞
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–1.7971 – 2.2137i
–0.2629 + 2.7039i
–0.2629 – 2.7039i

zero(h)
ans =
  –0.0500 + 2.7382i
  –0.0500 – 2.7382i
  –2.0000 

dcgain(h)

ans =
   1

[ninf,fpeak] = norm(h,inf)% peak gain of freq. response

ninf =
1.3402 % peak gain

fpeak =
1.8537 % frequency where gain peaks

These functions also operate on LTI arrays and return arrays. For 
example, the poles of a three dimensional LTI array sysarray are 
obtained as follows.

sysarray = tf(rss(2,1,1,3))

Model sysarray(:,:,1,1)
=======================
Transfer function:
    -0.6201 s - 1.905
  ---------------------
  s^2 + 5.672 s + 7.405
 
Model sysarray(:,:,2,1)
=======================
Transfer function:
  0.4282 s^2 + 0.3706 s + 0.04264
  -------------------------------
      s^2 + 1.056 s + 0.1719
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Model sysarray(:,:,3,1)
=======================
Transfer function:
    0.621 s + 0.7567
  ---------------------
  s^2 + 2.942 s + 2.113

3x1 array of continuous-time transfer functions.

pole(sysarray)
ans(:,:,1) =
   -3.6337
   -2.0379
ans(:,:,2) =
   -0.8549
   -0.2011
ans(:,:,3) =
   -1.6968
   -1.2452
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State-Space Realizations
The following functions are useful to analyze, perform state coordinate 
transformations on, and derive canonical state-space realizations for 
single state-space LTI models or LTI arrays of state-space models.

The function ssbal uses a simple diagonal similarity transformation 

to balance the state-space data . This is accomplished by 
reducing the norm of the matrix.

Such balancing usually improves the numerical conditioning of 
subsequent state-space computations. Note that conversions to 
state-space using ss produce balanced realizations of transfer functions 
and zero-pole-gain models.

By contrast, the canonical realizations produced by canon, ctrbf, or 
obsvf are often badly scaled, sensitive to perturbations of the data, and 

State-Space Realizations

canon Canonical state-space realizations.

ctrb Controllability matrix.

ctrbf Controllability staircase form.

gram Controllability and observability gramians.

obsv Observability matrix.

obsvf Observability staircase form.

ss2ss State coordinate transformation.

ssbal Diagonal balancing of state-space realizations.

A B C, ,( ) T 1– AT T 1– B CT, ,( )→

A B C, ,( )

T 1– AT   T 1– B
CT  0
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poorly suited for state-space computations. Consequently, it is wise to 
use them only for analysis purposes and not in control design algorithms.
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In many applications, it is useful to consider collections of linear, time 
invariant (LTI) models. For example, you may want to consider a model with a 
single parameter that varies, such as

sys1 = tf(1, [1 1 1]);
sys2 = tf(1, [1 1 2]);
sys3 = tf(1, [1 1 3]);

and so on. A convenient way to store and analyze a collection like this is to use 
LTI arrays. Continuing this example, you can create this LTI array and store 
all three transfer functions in one variable.

sys_ltia = (sys1, sys2, sys3);

You can use the LTI array sys_ltia just like you would use, for example, sys1. 

You can use LTI arrays to collect a set of LTI models into a single MATLAB 
variable. You then use this variable to manipulate or analyze the entire 
collection of models in a vectorized fashion. You access the individual models 
in the collection through indexing rather than by individual model names. 

LTI arrays extend the concept of single LTI models in a similar way to how 
multidimensional arrays extend two-dimensional matrices in MATLAB (see 
Chapter 12, “Multidimensional Arrays” in Using MATLAB).

When to Collect a Set of Models in an LTI Array
You can use LTI arrays to represent:

• A set of LTI models arising from the linearization of a nonlinear system at 
several operating points

• A collection of transfer functions that depend on one or more parameters

• A set of LTI models arising from several system identification experiments 
applied to one plant

• A set of gain-scheduled LTI controllers

• A list of LTI models you want to collect together under the same name

Restrictions for LTI Models Collected in an Array
For each model in an LTI array, the following properties must be the same:

• The number of inputs and outputs 
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• The sample time, for discrete-time models

• The I/O names and I/O groups

Note  You cannot specify Simulink LTI blocks with LTI arrays.

Where to Find Information on LTI Arrays
The next two sections give examples that illustrate the concept of an LTI array, 
its dimensions, and size. To read about how to build an LTI array, go to 
“Building LTI Arrays” on page 4-12. The remainder of the chapter is devoted to 
indexing and operations on LTI Arrays. You can also apply the analysis 
functions in the Control System Toolbox to LTI arrays. See Chapter 5, “Model 
Analysis Tools,” for more information on these functions. You can also view 
response plots of LTI arrays with the LTI Viewer.
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The Concept of an LTI Array
To visualize the concept of an LTI array, consider the set of five transfer 
function models shown below. In this example, each model has two inputs and 
two outputs. They differ by parameter variations in the individual model 
components. 

Figure 5-1:  Five LTI Models to be Collected in an LTI Array

Figure 5-2:  An LTI Array Containing These Five Models

1.1
s 1+
------------ 0

0 1
s 5+
------------

1.3
s 1.1+
----------------- 0

0 1
s 5.2+
-----------------

1.11
s 1.2+
----------------- 0

0 1
s 5.4+
-----------------

1.15
s 1.3+
----------------- 0

0 1
s 5.6+
-----------------

1.09
s 1.4+
----------------- 0

0 1
s 5.8+
-----------------

1.09
s 1.4+
----------------- 0

0 1
s 5.8+
-----------------

1.15
s 1.3+
----------------- 0

0 1
s 5.6+
-----------------

1.11
s 1.2+
----------------- 0

0 1
s 5.4+
-----------------

1.3
s 1.1+
----------------- 0

0 1
s 5.2+
-----------------

1.1
s 1+
------------ 0

0 1
s 5+
------------ Each element of the LTI array 

is a model.

This LTI array embodies a 
1-by-5 list of models.
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Just as you might collect a set of two-by-two matrices in a multidimensional 
array, you can collect this set of five transfer function models as a list in an LTI 
array under one variable name, say, sys. Each element of the LTI array is an 
LTI model. 

Individual models in the LTI array sys are accessed via indexing. The general 
form for the syntax you use to access data in an LTI array is

For example, you can access the third model in sys with sys(:,:,3). The 
following illustrates how you can use indexing to select models or their 
components from sys.

Figure 5-3:  Using Indices to Select Models and Their Components

See “Indexing Into LTI Arrays” for more information on indexing.

sysa(Outputs,Inputs,Models)

The first index 
selects the output 
channels.

The second index 
selects the input 
channels.

The remaining indices select particular 
models in the LTI array by their array 
coordinates.

1.11
s 1.2+
----------------- 0

0 1
s 5.4+
-----------------

sysa(:,:,3) selects the third model in the array.

sysa(2,2,3) selects 
the (2,2) entry of the 
third model in the array.1.09

s 1.4+
----------------- 0

0 1
s 5.8+
-----------------

1.15
s 1.3+
----------------- 0

0 1
s 5.6+
-----------------

1.11
s 1.2+
----------------- 0

0 1
s 5.4+
-----------------

1.3
s 1.1+
----------------- 0

0 1
s 5.2+
-----------------

1.1
s 1+
------------ 0

0 1
s 5+
------------
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Higher Dimensional Arrays of LTI Models
You can also collect a set of models in a two-dimensional array. The following 
diagram illustrates a 2-by-3 array of six, two-output, one-input models called 
m2d.

Figure 5-4:  m2d: A 2-by-3 Array of Two-Output, One-Input Models

More generally, you can organize models into a 3-D or higher-dimensional 
array, in much the same way you arrange numerical data into 
multidimensional arrays (see “Multidimensional Arrays” in Using MATLAB).

m2d(:,:,2,1)

m2d(:,:,1,2) m2d(:,:,1,3)

m2d(:,:,2,2) m2d(:,:,2,3)

m2d(:,:,1,3)

m2d(:,:,1,1)

m2d(:,:,1,3) extracts the model in 
the (1,3) position of the array.

3.36
s 2.9+
-----------------

7.23

3.4
s 2.86+
--------------------

7.27

3.45
s 2.81+
--------------------

7.32

3.42
s 2.84+
--------------------

7.29

Each entry in this 2-by-3 array of 
models is a two-output, one-input 
transfer function.
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Dimensions, Size, and Shape of an LTI Array
The dimensions and size of a single LTI model are determined by the output 
and input channels. An array of LTI models has additional quantities that 
determine its dimensions, size, and shape.

There are two sets of dimensions associated with LTI arrays:

• The I/O dimensions—the output dimension and input dimension common to 
all models in the LTI array

• The array dimensions—the dimensions of the array of models itself

The size of the LTI array is determined by:

• The lengths of the I/O dimensions—the number of outputs (or inputs) 
common to all models in the LTI array

• The length of each array dimension—the number of models along that array 
dimension
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The next figure illustrates the concepts of dimension and size for the LTI array 
m2d, a 2-by-3 array of one-input, two-output transfer function models. 

Figure 5-5:  Dimensions and Size of m2d, an LTI Array 

You can load this sample LTI array into your workspace by typing

load LTIexamples
size(m2d)

2x3 array of continuous-time transfer functions
Each transfer function has 2 outputs and 1 input.

The I/O dimensions correspond to the row and column dimensions of the 
transfer matrix. The two I/O dimensions are both of length 1 for SISO models. 
For MIMO models the lengths of these dimensions are given by the number of 
outputs and inputs of the model.

Five related quantities are pertinent to understanding the array dimensions:
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The length of the second array dimension is 3.

Input dimension (length 1)
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3.36
s 2.9+
-----------------

7.23

3.4
s 2.86+
--------------------

7.27

3.45
s 2.81+
--------------------

7.32

m2d(:,:,1,1) m2d(:,:,1,2) m2d(:,:,1,3)

m2d(:,:,2,1) m2d(:,:,2,2) m2d(:,:,2,3)

3.45
s 2.81+
--------------------

7.32

m2d(:,:,2,3)
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• N, the number of models in the LTI array

• K, the number of array dimensions

• , the list of lengths of the array dimensions

-  is the number of models along the  dimension.

• , the configuration of the models in the array

- The configuration determines the shape of the array. 

- The product of these integers  is N.

In the example model m2d,:

• The length of the output dimension, the first I/O dimension, is 2, since there 
are two output channels in each model. 

• The length of the input dimension, the second I/O dimension, is 1, since there 
is only one input channel in each model. 

• N, the number of models in the LTI array, is 6.

• K, the number of array dimensions, is 2.

• The array dimension lengths are [2 3].

• The array configuration is 2-by-3.

size and ndims 
You can access the dimensions and shape of an LTI array using:

• size to determine the lengths of each of the dimensions associated with an 
LTI array

• ndims to determine the total number of dimensions in an LTI array

When applied to an LTI array, size returns

[Ny Nu S1 S2 ... Sk]

where 

• Ny is the number of outputs common to all models in the LTI array.

• Nu is the number of inputs common to all models in the LTI array.

• S1 S2 ... Sk are the lengths of the array dimensions of a k-dimensional 
array of models. Si is the number of models along the ith array dimension.

S1S2…SK
Si ith

S1 by S–– 2 by … by SK––––

S1 S2× … SK××
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Note the following when using the size function:

• By convention, a single LTI model is treated as a 1-by-1 array of models.

For single LTI models, size returns only the I/O dimensions [Ny Nu].

• For LTI arrays, size always returns at least two array dimensions. For 
example, the size of a 2-by-1 LTI array in [Ny Nu 2 1]

• size ignores trailing singleton dimensions beyond the second array 
dimension. For example, size returns [Ny Nu 2 3] for a 2-by-3-by-1-by-1 LTI 
array of models with Ny outputs and Nu inputs.

The function ndims returns the total number of dimensions in an LTI array: 

• 2, for single LTI models

• 2 + p, for LTI arrays, where p (greater than 2) is the number of array 
dimensions 

Note that

ndims (sys) = length(size(sys))

To see how these work on the sample 2-by-3 LTI array m2d of two-output, 
one-input models, type

load LTIexamples
s = size(m2d)

s =

     2     1     2     3

Notice that size returns a vector whose entries correspond to the length of 
each of the four dimensions of m2d: two outputs and one input in a 2-by-3 array 
of models. Type

ndims(m2d)

ans =
     4

to see that there are indeed four dimensions attributed to this LTI array.
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reshape
Use reshape to reorganize the arrangement (array configuration) of the models 
of an existing LTI array. 

For example, to arrange the models in an LTI Array sys as a  
array, type 

reshape(sys,w1,...,wp)

where w1,...,wp are any set of integers whose product is N, the number of 
models in sys. 

You can reshape the LTI array m2d into a 3-by-2, a 6-by-1, or a 1-by-6 array 
using reshape. For example, type

load LTIexamples
sys = reshape(m2d,6,1);
size(sys)

6x1 array of continuous-time transfer functions
Each transfer function has 2 outputs and 1 inputs.

s = size(sys)

s =
     2     1     6 1

w1 …× wp×
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Building LTI Arrays
There are several ways to build LTI arrays:

• Using a for loop to assign each model in the array

• Using stack to concatenate LTI models into an LTI array

• Using tf, zpk, ss, or frd

In addition, you can use the command rss to generate LTI arrays of random 
state-space models. 

Generating LTI Arrays Using rss
A convenient way to generate arrays of state-space models with the same 
number of states in each model is to use rss. The syntax is

rss(N,P,M,sdim1,...,sdimk)

where 

• N is the number of states of each model in the LTI array.

• P is the number of outputs of each model in the LTI array.

• M is the number of inputs of each model in the LTI array.

• sdim1,...,sdimk are the lengths of the array dimensions.

For example, to create a 4-by-2 array of random state-space models with three 
states, one output, and one input, type

sys = rss(3,2,1,4,2);
size(sys)

4x2 array of continuous-time state-space models
Each model has 2 outputs, 1 input, and 3 states.

Building LTI Arrays Using for Loops
Consider the following second-order SISO transfer function that depends on 
two parameters,  and 

.

ζ ω

H s( ) ω2

s2 2ζωs ω2+ +
---------------------------------------=
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Suppose, based on measured input and output data, you estimate confidence 
intervals , and  for each of the parameters,  and . All of the 
possible combinations of the confidence limits for these model parameter 
values give rise to a set of four SISO models.

Figure 5-6:  Four LTI Models Depending on Two Parameters

You can arrange these four models in a 2-by-2 array of SISO transfer functions 
called H.

Figure 5-7:  The LTI Array H

Here, for ,  represents the transfer function

corresponding to the parameter values  and . 

ω1 ω2[ , ] ζ1 ζ2[ , ] ω ζ

H11 s( )
ω1

2

s2 2ζ1ω1s ω1
2+ +

---------------------------------------------=

H21 s( )
ω2

2

s2 2ζ1ω2s ω2
2+ +

---------------------------------------------= H22 s( )
ω2

2

s2 2ζ2ω2s ω2
2+ +

---------------------------------------------=

H12 s( )
ω1

2

s2 2ζ2ω1s ω1
2+ +

---------------------------------------------=

ω1 ω2

ζ1

ζ2

H(:,:,1,1) H(:,:,1,2)

H(:,:,2,1) H(:,:,2,2)

ω1 ω2

ζ2

ζ1
Each entry of this 2-by-2 array is 
a SISO transfer function model.

i,j 1 2,{ }∈ H(:,:,i,j)

ωj
2

s2 2ζiωjs ωj
2+ +

---------------------------------------------

ζ ζi= ω ωj=
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The first two colon indices ( ) select all I/O channels from the I/O dimensions 
of H. The third index of H refers to the first array dimension ( ), while the fourth 
index is for the second array dimension ( ).

Suppose the limits of the ranges of values for  and  are [0.66,0.76] and 
[1.2,1.5], respectively. Enter these at the command line.

zeta = [0.66,0.75];
w = [1.2,1.5];

Since the four models have the same parametric structure, it’s convenient to 
use two nested for loops to construct the LTI array.

for i = 1:2
for j = 1:2
H(:,:,i,j) = tf(w(j)^2,[1 2*zeta(i)*w(j) w(j)^2]);

end
end

H now contains the four models in a 2-by-2 array. For example, to display the 
transfer function in the (1,2) position of the array, type

H(:,:,1,2)

Transfer function:
       2.25
-------------------
s^2 + 1.98 s + 2.25

:
ζ

ω

ζ ω



Building LTI Arrays

5-15

For the purposes of efficient computation, you can initialize an LTI array to 
zero, and then reassign the entire array to the values you want to specify. The 
general syntax for zero assignment of LTI arrays is

To initialize H in the above example to zero, type

H = tf(zeros(1,1,2,2));

before you implement the nested for loops.

Building LTI Arrays Using the stack Function
Another way to build LTI arrays is using the function stack. This function 
operates on single LTI models as well as LTI arrays. It concatenates a list of 
LTI arrays or single LTI models only along the array dimension. The general 
syntax for stack is

stack(Arraydim,sys1,sys2...)

where 

• Arraydim is the array dimension along which to concatenate the LTI models 
or arrays. 

• sys1, sys2, ... are the LTI models or LTI arrays to be concatenated.

Lengths of the array dimensionsLengths of the output/input dimensions

The maximum number of states in any model in the LTI array

sysa = tf(zeros(Ny,Nu,S1,...,SK))

sysa = zpk(zeros(Ny,Nu,S1,...,SK))

sysa = ss(zeros(Ny,Nu,S1,...,SK,Nx))

sysa = frd(zeros(Ny,Nu,Nf,S1,...,SK))

The number of frequency vectors in the FRD
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When you concatenate several models or LTI arrays along the jth array 
dimension, such as in 

stack(j,sys1,sys2,...,sysn)

• The lengths of the I/O dimensions of sys1,...,sysn must all match.

• The lengths of all but the jth array dimension of sys1,...,sysn must match.

For example, if two TF models sys1 and sys2 have the same number of inputs 
and outputs, 

sys = stack(1,sys1,sys2) 

concatenates them into a 2-by-1 array of models.

There are two principles that you should keep in mind:

• stack only concatenates along an array dimension, not an I/O dimension.

• To concatenate LTI models or LTI arrays along an input or output 
dimension, use the bracket notation ([,] [;]). See “Model Interconnection 
Functions” for more information on the use of bracket notation to 
concatenate models. See also “Special Cases for Operations on LTI Arrays” 
for some examples of this type of concatenation of LTI arrays.

Here’s an example of how to build the LTI array H using the function stack. 

% Set up the parameter vectors.

zeta = [0.66,0.75];
w = [1.2,1.5];

% Specify the four individual models with those parameters.
%
H11 = tf(w(1)^2,[1 2*zeta(1)*w(1) w(1)^2]);
H12 = tf(w(2)^2,[1 2*zeta(1)*w(2) w(2)^2]);
H21 = tf(w(1)^2,[1 2*zeta(2)*w(1) w(1)^2]);
H22 = tf(w(2)^2,[1 2*zeta(2)*w(2) w(2)^2]);

% Set up the LTI array using stack.

COL1 = stack(1,H11,H21); % The first column of the 2-by-2 array
COL2 = stack(1,H12,H22); % The second column of the 2-by-2 array
H = stack(2, COL1, COL2); % Concatenate the two columns of models.
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Notice that this result is very different from the single MIMO LTI model 
returned by

H = [H11,H12;H21,H22];

Building LTI Arrays Using tf, zpk, ss, and frd
You can also build LTI arrays using the tf, zpk, ss, and frd constructors. You 
do this by using multidimensional arrays in the input arguments for these 
functions. 

Specifying Arrays of TF models tf
For TF models, use

sys = tf(num,den)

where 

• Both num and den are multidimensional cell arrays the same size as sys (see 
“size and ndims” on page 4-9).

• sys(i,j,n1,...,nK) is the (i, j) entry of the transfer matrix for the model 
located in the  position of the array.

• num(i,j,n1,...,nK) is a row vector representing the numerator polynomial 
of sys(i,j,n1,...,nK). 

• den(i,j,n1,...,nK) is a row vector representing denominator polynomial 
of sys(i,j,n1,...,nK).

See “MIMO Transfer Function Models” on page 2-10 for related information on 
the specification of single TF models.

Specifying Arrays of ZPK Models Using zpk 

For ZPK models, use

sys = zpk(zeros,poles,gains)

where

• Both zeros and poles are multidimensional cell arrays whose cell entries 
contain the vectors of zeros and poles for each I/O pair of each model in the 
LTI array.

n1 … nK, ,( )
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• gains is a multidimensional array containing the scalar gains for each I/O 
pair of each model in the array.

• The dimensions (and their lengths) of zeros, poles, and gains, determine 
those of the LTI array, sys.

Specifying Arrays of SS Models Using ss

To specify arrays of SS models, use

sys = ss(a,b,c,d)

where a, b, c, and d are real-valued multidimensional arrays of appropriate 
dimensions. All models in the resulting array of SS models have the same 
number of states, outputs, and inputs. 

Note  You cannot use the ss constructor to build an array of state-space 
models with different numbers of states. Use stack to build such LTI arrays.

The Size of LTI Array Data for SS Models
The size of the model data for arrays of state-space models is summarized in 
the following table.

where

•  is the maximum of the number of states in each model in the array.

•  is the number of inputs in each model.

•  is the number of outputs in each model.

•  are the lengths of the array dimensions.

Data Size (Data)

a

b

c

d

Ns Ns S1S2…SK

Ns NuS1S2…SK

Ny NsS1S2… SK

Ny NuS1S2…SK

Ns

Nu

Ny

S1 S2 … SK, , ,
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Specifying Arrays of FRD Models Using frd

To specify a K-dimensional array of p-output, m-input FRD models for which 
 are the lengths of the array dimensions, use

sys = frd(response,frequency,units)

where 

• frequency is a real vector of n frequency data points common to all FRD 
models in the LTI array.

• response is a p-by-m-by-n-by- -by- -by-  complex-valued 
multidimensional array.

• units is the optional string specifying ’rad/s’ or ’Hz’.

Note that for specifying an LTI array of SISO FRD models, response can also 
be a multidimensional array of 1-by-n matrices whose remaining dimensions 
determine the array dimensions of the FRD.

S1 S2 … SK, , ,

S1 … SK
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Indexing Into LTI Arrays
You can index into LTI arrays in much the same way as you would for 
multidimensional arrays to:

• Access models

• Extract subsystems

• Reassign parts of an LTI array

• Delete parts of an LTI array

When you index into an LTI array sys, the indices should be organized 
according to the following format

where

• Outputs are indices that select output channels.

• Inputs are indices that select input channels.

•  are indices into the array dimensions that select one model or a 
subset of models in the LTI array.

Note on Indexing into LTI Arrays of FRD models. For FRD models, the array indices 
can be followed by the keyword 'frequency' and some expression selecting a 
subset of the frequency points as in

sys (outputs, inputs, n1,...,nk, 'frequency', SelectedFreqs)

See “Referencing FRD Models Through Frequencies” for details on frequency 
point selection in FRD models.

Accessing Particular Models in an LTI Array
To access any given model in an LTI array: 

• Use colon arguments (:,:) for the first two indices to select all I/O channels. 

• The remaining indices specify the model coordinates within the array.

For example, if sys is a 5-by-2 array of state-space models defined by

sys = rss(4,3,2,5,2);

sys(Outputs, Inputs, )n1 … nK, ,

n1 … nK, ,
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you can access (and display) the model located in the (3,2) position of the array 
sys by typing

sys(:,:,3,2)

If sys is a 5-by-2 array of 3-output, 2-input FRD models, with frequency vector 
[1,2,3,4,5], then you can access the response data corresponding to the 
middle frequency (3 rad/s), of the model in the (3,1) position by typing

sys(:,:,3,1,'frequency',3.0)

To access all frequencies of this model in the array, you can simply type

sys(:,:,3,1)

Single Index Referencing of Array Dimensions
You can also access models using single index referencing of the array 
dimensions. 

For example, in the 5-by-2 LTI array sys above, you can also access the model 
located in the (3,2) position by typing 

sys(:,:,8)

since this model is in the eighth position if you were to list the 10 models in the 
array by successively scanning through its entries along each of its columns. 

For more information on single index referencing, see “Advanced Indexing” 
under “M-File Programming” in the MATLAB online documentation.

Extracting LTI Arrays of Subsystems
To select a particular subset of I/O channels from all the models in an LTI 
array, use the syntax described in “Extracting and Modifying Subsystems” on 
page 3-5. For example, 

sys = rss(4,3,2,5,2);
A = sys(1, [1 2])

or equivalently,

A = sys(1,[1 2],:,:)
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selects the first two input channels, and the first output channel in each model 
of the LTI array A, and returns the resulting 5-by-2 array of one-output, 
two-input subsystems.

You can also combine model selection with I/O selection within an LTI array. 
For example, to access both:

• The state-space model in the (3,2) array position

• Only the portion of that model relating the second input to the first output

type

sys(1,2,3,2)

To access the subsystem from all inputs to the first two output channels of this 
same array entry, type

sys(1:2,:,3,2)

Reassigning Parts of an LTI Array
You can reassign entire models or portions of models in an LTI array. For 
example, 

sys = rss(4,3,2,5,2); % 5X2 array of state-space models
H = rss(4,1,1,5,2); % 5X2 array of SISO models
sys(1,2) = H

reassigns the subsystem from input two to output one, for all models in the LTI 
array sys. This SISO subsystem of each model in the LTI array is replaced 
with the LTI array H of SISO models. This one-line assignment command is 
equivalent to the following 10-step nested for loop.

for k = 1:5
for j = 1:2
sys(1,2,k,j) = H(:,:,k,j);

end
end

Notice that you don’t have to use the array dimensions with this assignment. 
This is because I/O selection applies to all models in the array when the array 
indices are omitted.

Similarly, the commands
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sys(:,:,3,2) = sys(:,:,4,1);
sys(1,2,3,2) = 0;

reassign the entire model in the (3,2) position of the LTI array sys and the (1,2) 
subsystem of this model, respectively.

Deleting Parts of an LTI Array
You can use indexing to delete any part of an LTI array by reassigning it to be 
empty ([]). For instance,

sys = rss(4,3,2,5,2);
sys(1,:) = [];
size(sys)

5x2 array of continuous-time state-space models
Each model has 2 outputs, 2 inputs, and 4 states.

deletes the first output channel from every model of this LTI array.

Similarly,

sys(:,:,[3 4],:) = []

deletes the third and fourth rows of this two-dimensional array of models.
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Operations on LTI Arrays
Using LTI arrays, you can apply almost all of the basic model operations that 
work on single LTI models to entire sets of models at once. These basic 
operations include: 

• The arithmetic operations: +, –, *, /,\,',.'

• The  functions: concatenation along I/O dimensions ([,], [;]), feedback, 
append, series, parallel, and lft 

When you apply any of these operations to two (or more) LTI arrays (for 
example, sys1 and sys2), the operation is implemented on a model-by-model 
basis. Therefore, the kth model of the resulting LTI array is derived from the 
application of the given operation to the kth model of sys1 and the kth model 
of sys2.

For example, if sys1 and sys2 are two LTI arrays and

sysa = op(sys1,sys2)

then the kth model in the resulting LTI array sys is obtained by adding the kth 
models in sys1 to the kth model in sys2

sysa(:,:,k) = sys1(:,:,k) + sys2(:,:,k)

You can also apply any of the response plotting functions such as step, bode, 
and nyquist to LTI arrays. These plotting functions are also applied on a model 
by model basis.
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Example: Addition of Two LTI Arrays
The following diagram illustrates the addition of two 3-by-1 LTI arrays 
sys1+sys2.

Figure 5-8:  The Addition of Two LTI Arrays

The summation of these LTI arrays 

sysa = sys1+sys2

is equivalent to the following model-by-model summation.

for k = 1:3
sysa(:,:,k)=sys1(:,:,k) + sys2(:,:,k)

end

2s 6.5+

s2 6.5s 9+ +
---------------------------------

1
s 4.5+
-----------------

1
s 2.5+
-----------------

sys2sys1 + = sysa

sys1(:,:,3

sys1(:,:,2)

sys2(:,:,3) sys(:,:,3)
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2.1
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=

=

1.5
s 3.9+
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1
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3.15 9.25+
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Note that:

• Each model in sys1 and sys2 must have the same number of inputs and 
outputs. This is required for the addition of two LTI arrays.

• The lengths of the array dimensions of sys1 and sys2 must match. 

Dimension Requirements 
In general, when you apply any of these basic operations to two or more LTI 
arrays: 

• The I/O dimensions of each of the LTI arrays must be compatible with the 
requirements of the operation.

• The lengths of array dimensions must match. 

The I/O dimensions of each model in the resulting LTI array are determined by 
the operation being performed. See Chapter 3, “Operations on LTI Models,” for 
requirements on the I/O dimensions for the various operations. 

For example, if sys1 and sys2 are both 1-by-3 arrays of LTI models with two 
inputs and two outputs, and sys3 is a 1-by-3 array of LTI models with two 
outputs and 1 input, then

sys1 + sys2

is an LTI array with the same dimensions as sys1 and sys2.

sys1 * sys3

is a 1-by-3 array of LTI models with two outputs and one input, and 

[sys1,sys3]

is a 1-by-3 array of LTI models with two outputs and three inputs.

Special Cases for Operations on LTI Arrays
There are some special cases in coding operations on LTI arrays. 

Consider

sysa = op(sys1,sys2)

where op is a symbol for the operation being applied. sys1 is an LTI array, and 
sysa (the result of the operation) is an LTI array with the same array 
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dimensions as sys1. You can use shortcuts for coding sysa = op(sys1,sys2) 
in the following cases:

• For operations that apply to LTI arrays, sys2 does not have to be an array. 
It can be a single LTI model (or a gain matrix) whose I/O dimensions satisfy 
the compatibility requirements for op (with those of each of the models in 
sys1). In this case, op applies sys2 to each model in sys1, and the kth model 
in sys satisfies
sysa(:,:,k) = op(sys1(:,:,k),sys2)

• For arithmetic operations, such as +, *, /, and \, sys2 can be either a single 
SISO model, or an LTI array of SISO models, even when sys1 is an LTI array 
of MIMO models. This special case relies on MATLAB’s scalar expansion 
capabilities for arithmetic operations.

- When sys2 is a single SISO LTI model (or a scalar gain), op applies sys2 
to sys1 on an entry-by-entry basis. The ijth entry in the kth model in sysa 
satisfies

sysa(i,j,k) = op(sys1(i,j,k),sys2)

- When sys2 is an LTI array of SISO models (or a multidimensional array 
of scalar gains), op applies sys2 to sys1 on an entry-by-entry basis for each 
model in sysa.

sysa(i,j,k) = op(sys1(i,j,k),sys2(:,:,k))

Examples of Operations on LTI Arrays with Single LTI Models
Suppose you want to create an LTI array containing three models, where, for 

 in the set , each model  has the form

You can do this efficiently by first setting up an LTI array h containing the 
SISO models  and then using concatenation to form the LTI array H of 
MIMO LTI models , . To do this, type

tau = [1.1 1.2 1.3];
for i=1:3 % Form LTI array h of SISO models.

τ 1.1 1.2 1.3, ,{ } Hτ s( )

Hτ s( )

1
s τ+
----------- 0

1–
1
s
---

=

1 s τ+( )⁄
Hτ s( ) τ 1.1 1.2 1.3, ,{ }∈
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h(:,:,i)=tf(1,[1 tau]); 
end
H = [h 0; –1 tf(1,[1 0])]; %Concatenation: array h & single models
size(H)

3x1 array of continuous-time transfer functions
Each transfer function has 2 output(s) and 2 input(s).

Similarly, you can use append to perform the diagonal appending of each model 
in the SISO LTI array h with a fixed single (SISO or MIMO) LTI model. 

S = append(h,tf(1,[1 3])); % Append a single model to h.

specifies an LTI array S in which each model has the form

You can also combine an LTI array of MIMO models and a single MIMO LTI 
model using arithmetic operations. For example, if h is the LTI array of three 
SISO models defined above, 

[h,h] + [tf(1,[1 0]);tf(1,[1 5])]

adds the single one-output, two-input LTI model [1/s 1/(s + 5)] to every 
model in the 3-by-1 LTI array of one-output, two-input models [h,h]. The 
result is a new 3-by-2 array of models.

Examples: Arithmetic Operations on LTI Arrays and SISO Models
Using the LTI array of one-output, two-input state-space models [h,h], 
defined in the previous example,

tf(1,[1 3]) + [h,h]

adds a single SISO transfer function model to each entry in each model of the 
LTI array of MIMO models [h,h].

Finally,

G = rand(1,1,3,1);
sysa = G + [h,h]

Sτ s( )

1
s τ+
----------- 0

0 1
s 3+
------------

=
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adds the array of scalars to each entry of each MIMO model in the LTI array 
[h,h] on a model-by-model basis. This last command is equivalent to the 
following for loop.

hh = [h,h];
for k = 1:3
sysa(:,:,k) = G(1,1,k) + hh(:,:,k);

end

Other Operations on LTI Arrays
You can also apply the analysis functions, such as bode, nyquist, and step, to 
LTI arrays.
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The Control System Toolbox provides editors that allow you to set properties 
and preferences in the SISO Design Tool, the LTI Viewer, and in any response 
plots that you create from the MATLAB prompt.

Properties refer to settings that are specific to an individual response plot. This 
includes the following:

• Axes labels, and limits

• Data units and scales

• Plot styles, such as grids, fonts, and axes foreground colors

• Plot characteristics, such as rise time, peak response, and gain and phase 
margins.

Preferences refers to properties that persist either:

• Within a single session for a specific instance of an LTI Viewer or a SISO 
Design Tool

• Across Control System Toolbox sessions

The former are called tool preferences, the latter toolbox preferences. 

This document contains five sections:

• “Setting Toolbox Preferences” — Using the Toolbox Preferences Editor, you 
can set features that apply to all LTI Viewers, SISO Design Tools, and 
response plots you create. Settings here persist from session to session.

• “Setting Tool Preferences” — Using either the SISO Tool Editor or LT Viewer 
Editor, you can set features that apply to individual instances of LTI Viewers 
and SISO Design Tools. 

• “Customizing Response Plot Properties” — Using the Property Editor, you 
can set features that apply to individual instances of response plots

- “Property Editing for Subplots” — How to edit subplots individually using 
the Property Editor.

- “Customizing Plots Inside the SISO Design Tool” — How to use the 
Property Editor specific to the SISO Design Tool.
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The Property and Preferences Hierarchy
This diagram explains the hierarchy from properties, which are local, to 
toolbox preferences, which are global and persist from session to session.

User Preferences

Toolbox Preferences
Persist across sessions

Tool Preferences
Specific to an instance
of a tool

Plot Properties
Specific to an instance
of a plot

Inheritance

Inheritance SISO Design ToolSISO Design Tool LTI Viewer

Response PlotResponse Plot Response PlotResponse Plot Response PlotResponse Plot

Saved 
to disk

Not saved 

to disk

Not saved 

to disk

Response PlotResponse Plot
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The Toolbox Preferences Editor allows you to set plot preferences that will 
persist from session to session. This is the highest level shown in “The Property 
and Preferences Hierarchy.”

Toolbox Preferences Editor
To open the Toolbox Preferences Editor, select Toolbox Preferences under the 
File menu of the LTI Viewer or the SISO Design Tool. Alternatively, you can 
type

ctrlpref

at the MATLAB prompt.

Note  To get help on pages in the Control System Toolbox Preferences editor, 
click on the page tabs below.

.

The Control System Toolbox Preferences Editor
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Units Page

Note  To get help on pages in the Control System Toolbox Preferences editor, 
click on the page tabs below.

Use the Units page to set preferences for the following:

• Frequency — Radians per second (rad/sec) or Hertz (Hz)

• Magnitude — Decibels (dB) or absolute value (abs) 

• Phase — Degrees or radians

For frequency and magnitude axes, you can select logarithmic or linear scales.

Style Page

Note  Click on the page tabs below to get help on pages in the Control System 
Toolbox Preferences editor.
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Use the Style page to toggle grid visibility and set font preferences and axes 
foreground colors for all plots you create using the Control System Toolbox. 
This figure shows the Style page. 

You have the following choices:

• Grid — Activate grids by default in new plots

• Font preferences — Set the font size, weight (bold), and angle (italic)

• Colors — Specify the color vector to use for the axes foreground, which 
includes the X-Y axes, grid lines, and tick labels. Use a three-element vector 
to represent red, green, and blue (RGB) values. Vector element values can 
range from 0 to 1.

If you do not want to specify RGB values numerically, press the Select 
button to open the Select Colors window. See “Select colors” on page 8-9 for 
more information.

Characteristics Page

Note  Click on the page tabs below to get help on pages in the Control System 
Toolbox Preferences editor.
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The Characteristics page has selections for response characteristics and phase 
wrapping. This figure shows the Characteristics page with default settings.

The following are the available options for the Characteristics page:

• Response Characteristics:

- Specify settling time tolerance — You can set the threshold of the settling 
time calculation to any percentage from 0 to 100%. The default is 2%.

- Specify rise time boundaries — The standard definition of rise time is the 
time it takes the signal to go from 10% to 90% of the final value. You can 
choose any percentages you like (from 0% to 100%), provided that the first 
value is smaller than the second.

• Phase Wrapping — By default, the phase is not wrapped. Wrap the phrase 
by unchecking this box. If the phase is wrapped, all phase values are shifted 
such that their equivalent value displays in the range [-180°, 180°).

SISO Tool Page

Note  Click on the page tabs below to get help on pages in the Control System 
Toolbox Preferences editor.
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The SISO Tool page has settings for the SISO Design Tool. This figure shows 
the SISO Tool page with default settings.

You can make the following selections:

• Compensator Format — You can select either the time-constant format or 
the zero/pole/gain format. The time-constant format is 

where Tz1, Tz2, ..., are the zero time constants, and Tp1, Tp2, ..., are the pole 
time constants.

The zero/pole/gain format is a variation on the time-constant format.

In this case, the gain is compensator gain; z1, z2, ... and p1, p2, ..., are the zero 
and pole locations, respectively.

• Bode Options — By default, the SISO Design Tool shows the plant and 
sensor poles and zeros as blue x’s and o’s, respectively. Uncheck this box to 
eliminate the plant’s poles and zeros from the Bode plot. Note that the 
compensator poles and zeros (in red) will still appear.

dcgain
1 Tz1s+( )
1 Tp1s+( )

----------------------------× …

K
s z1+( )
s p1+( )

--------------------×
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Both the LTI Viewer and the SISO Design Tool have Tool Preferences Editors. 
These editors comprise the middle layer of “The Property and Preferences 
Hierarchy.”

Both editors allow you to set default characteristics for specific instances of LTI 
Viewers and SISO Design Tools. If you open a new instance of either, each 
defaults to the characteristics specified in the Toolbox Preferences editor.

LTI Viewer Preferences Editor
Select LTI Viewer Preferences under the Edit menu of the LTI Viewer to 
open the LTI Viewer Preferences editor, which is a tool for customizing 
various LTI Viewer properties, including units, fonts, and various other viewer 
characteristics. This figure shows the editor open to its first page.

Note  Click on the page tabs below to get help on LTI Viewer Preference 
editor pages.

The LTI Viewer Preferences Editor
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Units Page

Note  Click on the page tabs below to get help on LTI Viewer Preference 
editor pages.

You can select the following on the Units page:

• Frequency — Radians per second (rad/sec) or Hertz (Hz)

• Magnitude — Decibels (dB) or absolute value (abs) 

• Phase — Degrees or radians

For frequency and magnitude axes, you can select logarithmic or linear 
scales.

Style Page

Note  Click on the page tabs below to get help on LTI Viewer Preference 
editor pages.
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Use the Style page to toggle grid visibility and set font preferences and axes 
foreground colors for all plots in the LTI Viewer. This figure shows the Style 
page.

You have the following choices:

• Grid — Activate grids for all plots in the LTI Viewer 

• Fonts — Set the font size, weight (bold), and angle (italic)

• Colors — Specify the color vector to use for the axes foreground, which 
includes the X-Y axes, grid lines, and tick labels. Use a three-element vector 
to represent red, green, and blue (RGB) values. Vector element values can 
range from 0 to 1.

• If you do not want to specify the RGB values numerically, press the Select 
button to open the Select Colors window. See “Select colors” on page 8-9 for 
more information.

Characteristics Page

Note  Click on the page tabs below to get help on LTI Viewer Preference 
editor pages.
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The Characteristics page, shown below, has selections for response 
characteristics and phase wrapping.

The following choices are available:

• Response Characteristics:

- Specify settling time tolerance — You can set the threshold of the settling 
time calculation to any percentage from 0 to 100%. The default is 2%.

- Specify rise time boundaries — The standard definition of rise time is the 
time it takes the signal to go from 10% to 90% of the final value. You can 
choose any percentages you like (from 0% to 100%), provided that the first 
value is smaller than the second.

• Phase Wrapping — By default, the phase is not wrapped. Wrap the phrase 
by unchecking this box. If the phase is wrapped, all phase values are shifted 
such that their equivalent value displays in the range [-180°, 180°).

Parameters Page

Note  Click on the page tabs below to get help on LTI Viewer Preference 
editor pages.
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Use the Parameters page, shown below, to specify input vectors for time and 
frequency simulation.

The defaults are to generate time and frequency vectors for your plots 
automatically. You can, however, override the defaults as follows:

• Time Vector:

- Define stop time — Specify the final time value for your simulation

- Define vector — Specify the time vector manually using equal-sized time 
steps

• Frequency Vector:

- Define range — Specify the bandwidth of your response. Whether it’s in 
rad/sec or Hz depends on the selection you made in the Units page.

- Define vector — Specify the vector for your frequency values. Any real, 
positive, strictly monotonically increasing vector is valid.

SISO Tool Preferences Editor

Note  Click on the page tabs below to get help on SISO Tool Preference editor 
pages.
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To open the SISO Tool Preferences editor, select SISO Tool Preferences 
from the Edit menu of the SISO Design Tool. This window opens.

The SISO Tool Preferences Editor

Units Page

Note  Click on the page tabs below to get help on SISO Tool Preference editor 
pages.
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The Units page has settings for the following units:

• Frequency — Radians per second (rad/sec) or Hertz (Hz)

• Magnitude — Decibels (dB) or absolute value (abs) 

• Phase — Degrees or radians

For frequency and magnitude axes, you can select logarithmic or linear scales.

Style Page

Note  Click on the page tabs below to get help on SISO Tool Preference editor 
pages.

Use the Style page to toggle grid visibility and set font preferences and axes 
foreground colors for all plots in the SISO Design Tool. This figure shows the 
Style page.

Grids Panel
Check the box to activate grids for all plots in the SISO Design Tool

Fonts Panel
Set the font size, weight (bold), and angle (italic) by using the menus and 
checkboxes.

Click on the Grids, Fonts, and Colors 
panels for help contents.
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Colors Panel
Specify the color vector to use for the axes foreground, which includes the X-Y 
axes, grid lines, and tick labels. Use a three-element vector to represent red, 
green, and blue (RGB) values. Vector element values can range from 0 to 1. 

Select colors. Press the Select button to open the Select Color window for the 
axes foreground. 

You can use this window to choose axes foreground colors without having to set 
RGB (red-green-blue) values numerically. To make your selections, click on the 
colored rectangles and press OK. If you want a broader range of colors, press 
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the Define Custom Colors button. This extends the Select Color window, as 
shown in this figure.

You can pick colors from the color spectrum located in the upper right corner of 
the window. To select a custom color, follow these steps:

1 Place your cursor at a point in the color spectrum that has a color you want 
to define.

2 Left-click. Notice that the hue, saturation, luminescence (lum.), red, green, 
and blue fields specify the numerical values for the selected color.

3 Press Add to Custom Colors. This adds the selected color to the row of boxes 
labeled Custom Color. You can now use this color just like the basic colors.

Options Page

Note  Click on the page tabs below to get help on SISO Tool Preference editor 
pages.
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The Options page, shown below, has selections for compensator format and 
Bode diagrams. 

You can make the following selections:

• Compensator Format — Select the time constant, natural frequency, or 
zero/pole/gain format. The time constant format is a factorization of the 
compenator transfer function of the form

where Tz1, Tz2, ..., are the zero time constants, and Tp1, Tp2, ..., are the pole 
time constants.

The natural frequency format is

where ωz1,ωz2, ... and ωp1, ωp2, ..., are the natural frequencies of the zeros and 
poles, respectively.

The zero/pole/gain format is

where z1, z2, ... and p1, p2, ..., are the zero and pole locations, respectively.

dcgain
1 Tz1s+( )
1 Tp1s+( )

----------------------------× …

dcgain
1 s ωz1⁄+( )

1 s ωp1( )⁄+( )
------------------------------------× …

K
s z1+( )
s p1+( )

--------------------×
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• Bode Options — By default, the SISO Design Tool shows the plant and 
sensor poles and zeros as blue x’s and o’s, respectively. Uncheck this box to 
eliminate the plant’s poles and zeros from the Bode plot. Note that the 
compensator poles and zeros (in red) will still appear.

Line Colors Page

Note  Click on the page tabs below to get help on SISO Tool Preference editor 
pages.

The Line Colors page, shown below, has selections for specify the colors of the 
lines in the response plots of the SISO Design Tool.

To change the colors of plot lines associated with parts of your model, specify a 
three-element vector to represent red, green, and blue (RGB) values. Vector 
element values can range from 0 to 1. 

If you do not want to specify the RGB values numerically, press the Select 
button to open the Select Colors window. See “Select colors” on page 8-9 for 
more information.

Click on the Select 
button for help on 
choosing colors.
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The lowest level of “The Property and Preferences Hierarchy” is setting 
response plot properties. If you have created a response plot, there are two 
ways to open the Property Editor:

• Double-click in the plot region

• Select Properties from the right-click menu

Before looking at the Property Editor, open a step response plot using this 
commands.

load ltiexamples
step(sys_dc)

This creates a step plot. Select Properties from the right-click window. Note 
that when you open the Property Editor, a black dashed box appears around 
the step response, as this figure shows.

A SISO System Step Response

The dashed line 
indicates that the 
Property Editor is 
active for this plot.
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Response Plots Property Editor

Note  Click on the page tabs below to get help on pages in the Property 
Editor.

This figure shows the Property Editor for this step response.

The Property Editor for the Step Response

In general, you can change the following properties of response plots:

• Labels — Titles and X- and Y-labels

• Limits — Numerical ranges of the X and Y axes

• Units — Where applicable (e.g., rad/sec to Hertz). If you cannot customize 
units, as is the case with step responses, the Property Editor will display that 
no units ar available for the selected plot.

• Style — Show a grid and adjust font properties, such as font size, bold and 
italics

• Characteristics — Where applicable, these include peak response, settling 
time, phase and gain margins, etc. Plot characteristics change with each plot 
response type. The Property Editor displays only the characteristics that 
make sense for the selected response plot. For example, phase and gain 
margins are not available for step responses.
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As you make changes in the Property Editor, they display immediately in the 
response plot. Conversely, if you make changes in a plot using right-click 
menus, the Property Editor for that plot automatically updates. The Property 
Editor and its associated plot are dynamically linked.

Labels Page

Note  Click on the page tabs below to get help on pages in the Property 
Editor.

To specify new text for plot titles and axis labels, type the new string in the field 
next to the label you want to change. Note that the label changes immediately 
as you type, so you can see how the new text looks as you are typing.

Limits Page

Note  Click on the page tabs below to get help on pages in the Property 
Editor.
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The Control System Toolbox selects default values for the axes limits to make 
sure that the maximum and minimum x and y values are displayed. If you want 
to override the default settings, change the values in the Limits fields. The 
Auto-Scale box automatically unchecks if you click on a different field. The 
new limits appear immediately in the response plot.

To reestablish the default values, recheck the Auto-Scale box.

Units Page

Note  Click on the page tabs below to get help on pages in the Property 
Editor.
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You can use the units page to change units in your response plot. The contents 
of this page depend on the response plot associated with the editor. 

Note that for step and impulse responses, there are no alternate units available 
(only time and amplitude are possible in the toolbox). This table lists the 
options available for the other response objects. Use the menus to toggle 
between units.

Table 9-1:  Optional Unit Conversions for Response Plots

Response Plot Unit Conversions

Bode and 
Bode Magnitude

Frequency in rad/sec or Hertz (Hz) using logarithmic or 
linear scale
Magnitude in decibels (dB) or the absolute value
Phase in degrees or radians

Impulse None

Nichols Chart 
and Nyquist 
Diagram

Frequency in rad/sec or Hertz 
Magnitude in decibels or the absolute value
Phase in degrees or radians

Pole/Zero Map Frequency in rad/sec or Hertz
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Style Page

Note  Click on the page tabs below to get help on pages in the Property 
Editor.

Use the Style page to toggle grid visibility and set font preferences and axes 
foreground colors for response plots.

You have the following choices:

• Grid — Activate grids by default in new plots

• Fonts — Set the font size, weight (bold), and angle (italic)

Singular Values Frequency in rad/sec or Hertz using logarithmic or 
linear scale
Magnitude in decibels or the absolute value

Step None

Table 9-1:  Optional Unit Conversions for Response Plots

Response Plot Unit Conversions
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• Colors — Specify the color vector to use for the axes foreground, which 
includes the X-Y axes, grid lines, and tick labels. Use a three-element vector 
to represent red, green, and blue (RGB) values. Vector element values can 
range from 0 to 1.

If you do not want to specify RGB values numerically, press the Select 
button to open the Select Colors window. See “Select colors” on page 8-9 for 
more information.

Characteristics Page

Note  Click on the page tabs below to get help on pages in the Property 
Editor.

The Characteristics page allows you to customize response characteristics for 
plots. Each response plot has its own set of characteristics; the table below lists 
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them. Use the checkboxes to activate the feature and the fields to specify rise 
or settling time percentages.

Table 9-2:  Response Characteristic Options for Response Plots

Plot Customizable Feature

Bode Diagram Show peak response
Show minimum stability margins
Show all stability margins
Unwrap phase (default is wrapped)

Bode Magnitude Show peak response

Impulse Show peak response
Show settling time within xx% (specify the percentage)

Nichols Chart Show peak response
Show minimum stability margins
Show all stability margins
Unwrap phase (default is wrapped)

Nyquist 
Diagram

Show peak response
Show minimum stability margins
Show all stability margins

Pole/Zero Map None

Sigma Show peak response

Step Show peak response
Show settling time within xx% (specify the percentage)
Show rise time from xx to yy% (specify the percentages)
Show steady state
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Property Editing for Subplots
If you create more than one plot in a single figure window, you can edit each 
plot individually. For example, the following code creates a figure with two 
plots, a step and an impulse response with two randomly selected systems.

subplot(2,1,1)
step(rss(2,1))
subplot(2,1,2)
impulse(rss(1,1))

After the figure window appears, double-click in the upper (step response) plot 
to activate the Property Editor. You will see a dashed line appear around the 
step response, indicating that it is the active plot for the editor. To switch to the 
lower (impulse response) plot, just click once in the impulse response plot 
region. The dashed box switches to the impulse response, and the Property 
Editor updates as well.
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Customizing Plots Inside the SISO Design Tool
Customizing plots inside the SISO Design Tool is similar to how you customize 
any response plot. The Control System Toolbox provides the following property 
editors specific to the SISO Design Tool:

• “Root Locus Property Editor”

• “Open-Loop Bode Property Editor”

• “Open-Loop Nichols Property Editor”

• “Prefilter Bode Property Editor”

You can use each of these property editors to create the customized plots within 
the SISO Design tool.

Root Locus Property Editor
There are three ways to open the Property Editor for root locus plots:

• Double-click in the root locus away from the curve

• Select Properties from the right-click menu

• Select Root Locus and then Properties from Edit in the menu bar

Note  Click on the page tabs below to get help on pages in the Root Locus 
Property Editor.
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This figure shows the Property Editor: Root Locus window.

Labels Page

Note  Click on the page tabs below to get help on pages in the Root Locus 
Property Editor.
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You can use the Label page to specify plot titles and axis labels. To specify a 
new label, type the string in the appropriate field. The root locus plot 
automatically updates.

Limits Page

Note  Click on the page tabs below to get help on pages in the Root Locus 
Property Editor.

The SISO Design Tool specifies default values for the real and imaginary axes 
ranges to make sure that all the poles and zeros in your model appear in the 
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root locus plot. Use the Limits page, shown below, to override the default 
settings.

To change the limits, specify the new limits in the real and imaginary axes 
Limits fields. The Auto-Scale checkbox automatically deactivates once you 
click in a different field. Your root locus diagram updates immediately. If you 
want to reapply the default limits, recheck the Auto-Scale checkboxes.

The Limit Stack panel provides support for storing and retrieving custom limit 
specifications. There are four buttons available:

 — Add the current limits to the stack

 — Retrieve the previous stack entry

 — Retrieve the next stack entry

 — Remove the current limits from the stack



Customizing Plots Inside the SISO Design Tool

9-15

Using these buttons, you can store and retrieve any number of saved custom 
axes limits.

Options Page

Note  Click on the page tabs below to get help on pages in the Root Locus 
Property Editor.

The Options page contains settings for adding a grid and changing the plot’s 
aspect ratio. This figure shows the Options page.

Check Show grid to display a grid on the root locus. If you have damping ratio 
constraints on your root locus, selecting Display damping ratios as % peak 
overshoot displays the damping ratio values along the grid lines. This figure 
shows both options activated for an imported model, Gservo. If you want to 
verify these settings, type 

load ltiexamples 
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at the MATLAB prompt and import Gservo from the workspace into your SISO 
Design Tool.

Displaying Damping Ratio Values

The numbers displayed on the root locus gridlines are the damping ratios as a 
percentage of the overshoot values.

If you check the Equal box in the Aspect Ratio panel, the x and y-axes are set 
to equal limit values.

Open-Loop Bode Property Editor
The Property Editor for open-loop Bode diagrams is identical to the one for root 
locus, with one exception, the Options page. Also, note the prefilter and 
open-loop Bode diagram property editors are identical. 

As is the case with the root locus Property Editor, there are three ways to open 
the Bode diagram property editor:

• Double-click in the Bode magnitude or phase plot away from the curve
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• Select Properties from the right-click menu

• Select Open-Loop Bode and then Properties from Edit in the menu bar

Note  Click on the page tabs below to get help on pages in the Open-Loop 
Bode Property Editor.

This figure shows the Property Editor: Open-Loop Bode editor.

Labels Page

Note  Click on the page tabs below to get help on pages in the Open-Loop 
Bode Property Editor.
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You can use the Label page to specify plot titles and axis labels. To specify a 
new label, type the string in the appropriate field. The Bode diagram 
automatically updates.

Limits Page

Note  Click on the page tabs below to get help on pages in the Open-Loop 
Bode Property Editor.
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The Control System Toolbox sets default limits for the frequency, magnitude, 
and phase scales for your plots. Use the Limits page to override the default 
values.

To change the limits, specify the new values in the Limits fields for frequency, 
magnitude, and phase. The Auto-Scale checkbox automatically deactivates 
once you click in a different field. The Bode diagram updates immediately.

To restore the default settings, recheck the Auto-Scale boxes.

Options Page

Note  Click on the page tabs below to get help on pages in the Open-Loop 
Bode Property Editor.
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This figure shows the Options page for Bode diagrams.

The following options are available from this page:

• Grid — Check Show grid to display grid lines.

• Magnitude/Phase — There are three radio buttons; you can toggle between 
the following displays:

- Show magnitude & phase
- Show magnitude only
- Show phase only

• Response Characteristics — Check Show stability margins to display the 
phase and gain margins on your Bode diagram. The margins appear as 
brown stems, and the Bode diagram displays the numerical values of the 
margins in one of the bottom corners of the gain and phase plots.

The Bode diagram in “Displaying Damping Ratio Values” on page 9-16, has 
the stability margins displayed.

Open-Loop Nichols Property Editor
As is the case with the root locus Property Editor, there are three ways to open 
the Nichols plot property editor:

• Double-click in the Nichols plot away from the curve

• Select Properties from the right-click menu
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• Select Open-Loop Nichols and then Properties from Edit in the menu bar

Note  Click on the page tabs below to get help on pages in the Open-Loop 
Nichols Property Editor.

This figure shows the Property Editor: Open-Loop Nichols editor.

Labels Page

Note  Click on the page tabs below to get help on pages in the Open-Loop 
Nichols Property Editor.
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You can use the Label page to specify plot titles and axis labels. To specify a 
new label, type the string in the appropriate field. The Nichols plot 
automatically updates.

Limits Page

Note  Click on the page tabs below to get help on pages in the Open-Loop 
Nichols Property Editor.

The Control System Toolbox sets default limits for the frequency, magnitude, 
and phase scales for your plots. Use the Limits page to override the default 
values.
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To change the limits, specify the new values in the Limits fields for open-loop 
phase and/or gain. The Auto-Scale checkbox automatically deactivates once 
you click in a different field. The Nichols plot updates immediately.

To restore the default settings, recheck the Auto-Scale boxes.

Options Page

Note  Click on the page tabs below to get help on pages in the Open-Loop 
Nichols Property Editor.

This figure shows the Options page for Bode diagrams.

The following options are available from this page:

• Grid — Check Show grid to display grid lines.

• Response Characteristics — Check Show stability margins to display the 
phase and gain margins on your Nichols plot.

Prefilter Bode Property Editor 
The Prefilter Bode Property Editor is identical to the Open-Loop Bode 
diagram property editor. There are three ways to open the prefilter editor:

• Double-click in the prefilter Bode magnitude or phase plot away from the 
curve

• Select Properties from the right-click menu
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• Select Prefilter Bode and then Properties from Edit in the menu bar

See “Open-Loop Bode Property Editor” on page 9-16 for a description of the 
features of this editor. 
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This chapter contains four detailed case studies of control system design and 
analysis using the Control System Toolbox.

• “Yaw Damper for a 747 Jet Transport” — Illustrating the classical design 
process

• “Hard-Disk Read/Write Head Controller” — Illustrating classical digital 
controller design

• “LQG Regulation: Rolling Mill Example” — Using linear quadratic Gaussian 
techniques to regulate the beam thickness in a steel rolling mill

• “Kalman Filtering”— Kalman filtering that illustrates both steady-state and 
time-varying Kalman filter design and simulation

Demonstration files for these case studies are available as jetdemo.m, 
diskdemo.m, milldemo.m, and kalmdemo.m. To run any of these demonstrations, 
type the corresponding name at the command line, for example,

jetdemo
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Yaw Damper for a 747 Jet Transport
This case study demonstrates the tools for classical control design by stepping 
through the design of a yaw damper for a 747 jet transport aircraft.

The jet model during cruise flight at MACH = 0.8 and H = 40,000 ft. is

A = [-0.0558   -0.9968    0.0802    0.0415
      0.5980   -0.1150   -0.0318         0
     -3.0500    0.3880   -0.4650         0
           0    0.0805    1.0000         0];

B = [ 0.0729  0.0000
     -4.7500 0.00775
      .15300  0.1430
           0         0];

C = [0     1     0     0
     0     0     0     1];

D = [0     0
     0     0];

The following commands specify this state-space model as an LTI object and 
attach names to the states, inputs, and outputs.

states = {'beta' 'yaw' 'roll' 'phi'};
inputs = {'rudder' 'aileron'};
outputs = {'yaw' 'bank angle'};

sys = ss(A,B,C,D,'statename',states,...
 'inputname',inputs,...
 'outputname',outputs);

You can display the LTI model sys by typing sys. MATLAB responds with

a = 
                      beta          yaw         roll          phi
         beta      -0.0558      -0.9968       0.0802       0.0415
          yaw        0.598       -0.115      -0.0318            0
         roll        -3.05        0.388       -0.465            0
          phi            0       0.0805            1            0
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b = 
                    rudder      aileron
         beta       0.0729            0
          yaw        -4.75      0.00775
         roll        0.153        0.143
          phi            0            0
 
 
c = 
                      beta          yaw         roll          phi
          yaw            0            1            0            0
   bank angle            0            0            0            1
 
 
d = 
                    rudder      aileron
          yaw            0            0
   bank angle            0            0
 
Continuous-time model.

The model has two inputs and two outputs. The units are radians for beta 
(sideslip angle) and phi (bank angle) and radians/sec for yaw (yaw rate) and 
roll (roll rate). The rudder and aileron deflections are in radians as well.

Compute the open-loop eigenvalues and plot them in the -plane.

damp(sys)

Eigenvalue            Damping     Freq. (rad/s)  
                                                         
-7.28e-003                  1.00e+000      7.28e-003    

 -5.63e-001                  1.00e+000      5.63e-001    
 -3.29e-002 + 9.47e-001i     3.48e-002      9.47e-001    
 -3.29e-002 - 9.47e-001i     3.48e-002      9.47e-001 

s
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pzmap(sys)

This model has one pair of lightly damped poles. They correspond to what is 
called the “Dutch roll mode.” 

Suppose you want to design a compensator that increases the damping of these 
poles, so that the resulting complex poles have a damping ratio  with 
natural frequency  rad/sec. You can do this using the Control System 
toolbox analysis tools. 

Open-Loop Analysis
First, perform some open-loop analysis to determine possible control 
strategies. Start with the time response (you could use step or impulse here).

ζ 0.35>
ωn 1<
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impulse(sys)

The impulse response confirms that the system is lightly damped. But the time 
frame is much too long because the passengers and the pilot are more 
concerned about the behavior during the first few seconds rather than the first 
few minutes. Next look at the response over a smaller time frame of 20 seconds.
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impulse(sys,20)

Look at the plot from aileron (input 2) to bank angle (output 2). To show only 
this plot, right-click and choose I/O Selector, then click on the (2,2) entry. The 
I/O Selector should look like this.
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The new figure is shown below.

The aircraft is oscillating around a nonzero bank angle. Thus, the aircraft is 
turning in response to an aileron impulse. This behavior will prove important 
later in this case study.

Typically, yaw dampers are designed using the yaw rate as sensed output and 
the rudder as control input. Look at the corresponding frequency response.

sys11=sys('yaw','rudder') % Select I/O pair.
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bode(sys11)

From this Bode diagram, you can see that the rudder has significant effect 
around the lightly damped Dutch roll mode (that is, near rad/sec). 

Root Locus Design
A reasonable design objective is to provide a damping ration  with a 
natural frequency  rad/sec. Since the simplest compensator is a static 
gain, first try to determine appropriate gain values using the root locus 
technique. 

% Plot the root locus for the rudder to yaw channel

ω 1=

ζ 0.35>
ωn 1.0<
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rlocus(sys11)

This is the root locus for negative feedback and shows that the system goes 
unstable almost immediately. If, instead, you use positive feedback, you may 
be able to keep the system stable.

rlocus(-sys11)
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sgrid

This looks better. By using simple feedback, you can achieve a damping ratio 
of . Click on the blue curve and move the data marker to track the ζ 0.45=
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gain and damping values. To achieve a 0.45 damping ratio, the gain should be 
about 2.85. This figure shows the data marker with similar values.

Next, close the SISO feedback loop.

K = 2.85;
cl11 = feedback(sys11,-K); % Note: feedback assumes negative 

 % feedback by default

Plot the closed-loop impulse response for a duration of 20 seconds, and compare 
it to the open-loop impulse response.
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impulse(sys11,'b--',cl11,'r',20)

The closed-loop response settles quickly and does not oscillate much, 
particularly when compared to the open-loop response.

Now close the loop on the full MIMO model and see how the response from the 
aileron looks. The feedback loop involves input 1 and output 1 of the plant (use 
feedback with index vectors selecting this input/output pair). At the MATLAB 
prompt, type

cloop = feedback(sys,-K,1,1);
damp(cloop) % closed-loop poles

Eigenvalue            Damping     Freq. (rad/s)  

-3.42e-001                  1.00e+000      3.42e-001    
-2.97e-001 + 6.06e-001i     4.40e-001      6.75e-001    
-2.97e-001 - 6.06e-001i     4.40e-001      6.75e-001    
-1.05e+000                  1.00e+000      1.05e+000 
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Plot the MIMO impulse response.

impulse(sys,'b--',cloop,'r',20)

The yaw rate response is now well damped, but look at the plot from aileron 
(input 2) to bank angle (output 2). When you move the aileron, the system no 
longer continues to bank like a normal aircraft. You have over-stabilized the 
spiral mode. The spiral mode is typically a very slow mode and allows the 
aircraft to bank and turn without constant aileron input. Pilots are used to this 
behavior and will not like your design if it does not allow them to fly normally. 
This design has moved the spiral mode so that it has a faster frequency.

Washout Filter Design
What you need to do is make sure the spiral mode does not move further into 
the left-half plane when you close the loop. One way flight control designers 
have addressed this problem is to use a washout filter  wherekH s( )

H s( ) s
s a+
------------=
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The washout filter places a zero at the origin, which constrains the spiral mode 
pole to remain near the origin. We choose  for a time constant of five 
seconds and use the root locus technique to select the filter gain H. First specify 
the fixed part  of the washout by

H = zpk(0,-0.2,1);

Connect the washout in series with the design model sys11 (relation between 
input 1 and output 1) to obtain the open-loop model

oloop = H * sys11;

and draw another root locus for this open-loop model.

rlocus(-oloop)
sgrid

Create and drag a data marker around the upper curve to locate the maximum 
damping, which is about . 

a 0.2=

s s a+( )⁄

ζ 0.3=
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This figure shows a data marker at the maximum damping ratio; the gain is 
approximately 2.07.

Look at the closed-loop response from rudder to yaw rate.

K = 2.07;
cl11 = feedback(oloop,-K);
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impulse(cl11,20)

The response settles nicely but has less damping than your previous design. 
Finally, you can verify that the washout filter has fixed the spiral mode 
problem. First form the complete washout filter  (washout + gain).

WOF = -K * H;

Then close the loop around the first I/O pair of the MIMO model sys and 
simulate the impulse response.

cloop = feedback(sys,WOF,1,1);

kH s( )
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% Final closed-loop impulse response
impulse(sys,'b--',cloop,'r',20)

The bank angle response (output 2) due to an aileron impulse (input 2) now has 
the desired nearly constant behavior over this short time frame. To inspect the 
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response more closely, use the I/O Selector in the right-click menu to select the 
(2,2) I/O pair. 

Although you did not quite meet the damping specification, your design has 
increased the damping of the system substantially and now allows the pilot to 
fly the aircraft normally.
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Hard-Disk Read/Write Head Controller

This case study demonstrates the ability to perform classical digital control 
design by going through the design of a computer hard-disk read/write head 
position controller.

Using Newton’s law, a simple model for the read/write head is the differential 
equation

where  is the inertia of the head assembly,  is the viscous damping 
coefficient of the bearings,  is the return spring constant,  is the motor 
torque constant,  is the angular position of the head, and  is the input 
current.

Taking the Laplace transform, the transfer function from  to  is

Using the values kg , Nm/(rad/sec), Nm/rad, 
and Nm/rad, form the transfer function description of this system. 
At the MATLAB prompt, type

J = .01; C = 0.004; K = 10; Ki = .05;

Hard Disk Drive

Disk Platen

Disk Drive Motor

Read/Write
Head

Solenoid

Ω

θ

l

Jd2θ

dt2
---------- Cdθ

dt
------- Kθ+ + Kii=

J C
K Ki

θ i

i θ

H s( )
Ki

Js2 Cs K+ +
----------------------------------=

J 0.01= m2 C 0.004= K 10=
Ki 0.05=
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num = Ki;
den = [J C K];
H = tf(num,den)

MATLAB responds with

Transfer function:
         0.05
-----------------------
0.01 s^2 + 0.004 s + 10

The task here is to design a digital controller that provides accurate positioning 
of the read/write head. The design is performed in the digital domain. First, 
discretize the continuous plant. Because our plant will be equipped with a 
digital-to-analog converter (with a zero-order hold) connected to its input, use 
c2d with the 'zoh' discretization method. Type

Ts = 0.005;  % sampling period = 0.005 second
Hd = c2d(H,Ts,'zoh')

Transfer function:
6.233e-05 z + 6.229e-05
-----------------------
 z^2 - 1.973 z + 0.998
 
Sampling time: 0.005

You can compare the Bode plots of the continuous and discretized models with
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bode(H,'-',Hd,'--')

To analyze the discrete system, plot its step response, type
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step(Hd)

The system oscillates quite a bit. This is probably due to very light damping. 
You can check this by computing the open-loop poles. Type

% Open-loop poles of discrete model
damp(Hd) 

Eigenvalue         Magnitude    Equiv. Damping    Equiv. Freq.
                                                                               
9.87e-01 + 1.57e-01i     9.99e-01       6.32e-03             3.16e+01        
9.87e-01 - 1.57e-01i     9.99e-01       6.32e-03             3.16e+01        

The poles have very light equivalent damping and are near the unit circle. You 
need to design a compensator that increases the damping of these poles.

The simplest compensator is just a gain, so try the root locus technique to select 
an appropriate feedback gain.
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rlocus(Hd)

As shown in the root locus, the poles quickly leave the unit circle and go 
unstable. You need to introduce some lead or a compensator with some zeros. 
Try the compensator

with  and .

The corresponding open-loop model

is obtained by the series connection

D z( ) z a+
z b+
------------=

a 0.85–= b 0=

yD z( )

Plant

u Hd z( )

Compensator
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D = zpk(0.85,0,1,Ts)
oloop = Hd * D

Now see how this compensator modifies the open-loop frequency response.

bode(Hd,'--',oloop,'-')

The plant response is the dashed line and the open-loop response with the 
compensator is the solid line.

The plot above shows that the compensator has shifted up the phase plot 
(added lead) in the frequency range rad/sec.

Now try the root locus again with the plant and compensator as open loop.

rlocus(oloop)
zgrid

ω 10>
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Open the Property Editor by right-clicking in the plot away from the curve. 
On the Limits page, set the x-axis limits from -1 to 1.01. This figure shows the 
result.

This time, the poles stay within the unit circle for some time (the lines drawn 
by zgrid show the damping ratios from  to 1 in steps of 0.1). Use a data ζ 0=
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marker to find the point on the curve where the gain equals 4.111e+03. This 
figure shows the data marker at the correct location.

To analyze this design, form the closed-loop system and plot the closed-loop 
step response. 

K = 4.11e+03;
cloop = feedback(oloop,K);
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step(cloop)

This response depends on your closed loop set point. The one shown here is 
relatively fast and settles in about 0.07 seconds. Therefore, this closed loop disk 
drive system has a seek time of about 0.07 seconds. This is slow by today’s 
standards, but you also started with a very lightly damped system.

Now look at the robustness of your design. The most common classical 
robustness criteria are the gain and phase margins. Use the function margin to 
determine these margins. With output arguments, margin returns the gain and 
phase margins as well as the corresponding crossover frequencies. Without 
output argument, margin plots the Bode response and displays the margins 
graphically.

To compute the margins, first form the unity-feedback open loop by connecting 
the compensator , plant model, and feedback gain  in series.

olk = K * oloop;

D z( ) k
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Next apply margin to this open-loop model. Type

[Gm,Pm,Wcg,Wcp] = margin(olk);
Margins = [Gm Wcg Pm Wcp]

Margins =

    3.7987  296.7978   43.2031  106.2462

To obtain the gain margin in dB, type

20*log10(Gm)

ans =
   11.5926

You can also display the margins graphically by typing 

margin(olk)

u yD z( ) Plant

k

–

+

oloop
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The command produces the plot shown below.

This design is robust and can tolerate a 11 dB gain increase or a 40 degree 
phase lag in the open-loop system without going unstable. By continuing this 
design process, you may be able to find a compensator that stabilizes the 
open-loop system and allows you to reduce the seek time.
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LQG Regulation: Rolling Mill Example
This case study demonstrates the use of the LQG design tools in a process 
control application. The goal is to regulate the horizontal and vertical thickness 
of the beam produced by a hot steel rolling mill. This example is adapted from 
[1]. The full plant model is MIMO and the example shows the advantage of 
direct MIMO LQG design over separate SISO designs for each axis. Type

milldemo

at the command line to run this demonstration interactively.

Process and Disturbance Models
The rolling mill is used to shape rectangular beams of hot metal. The desired 
outgoing shape is sketched below.

rolling cylinders

shaped beam

x

y
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This shape is impressed by two pairs of rolling cylinders (one per axis) 
positioned by hydraulic actuators. The gap between the two cylinders is called 
the roll gap.

The objective is to maintain the beam thickness along the x- and y-axes within 
the quality assurance tolerances. Variations in output thickness can arise from 
the following:

• Variations in the thickness/hardness of the incoming beam

• Eccentricity in the rolling cylinders

Feedback control is necessary to reduce the effect of these disturbances. 
Because the roll gap cannot be measured close to the mill stand, the rolling 
force is used instead for feedback.

The input thickness disturbance is modeled as a low pass filter driven by white 
noise. The eccentricity disturbance is approximately periodic and its frequency 
is a function of the rolling speed. A reasonable model for this disturbance is a 
second-order bandpass filter driven by white noise.

-axis

incoming beam shaped beam

rolling cylinders

rolling mill stand

x
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This leads to the following generic model for each axis of the rolling process.

Figure 10-1:  Open-loop model for x- or y-axis

The measured rolling force variation  is a combination of the incremental 
force delivered by the hydraulic actuator and of the disturbance forces due to 
eccentricity and input thickness variation. Note that:

• The outputs of , and  are the incremental forces delivered 
by each component.

• An increase in hydraulic or eccentricity force reduces the output thickness 
gap .

• An increase in input thickness increases this gap.

The model data for each axis is summarized below.

hydraulic actuator

eccentricity model

+

+

–

input disturbance model

+

+

+

H s( )

Fi s( )

Fe s( )

δ

wi

we

u

gx

f

u command
δ thickness gap (in mm)
f incremental rolling force
wi we, driving white noise for disturbance models

f2

f1

force-to-gap gain

f

H s( ) Fe s( ), Fi s( )

δ
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Model Data for the x-Axis

Model Data for the y-Axis

LQG Design for the x-Axis
As a first approximation, ignore the cross-coupling between the - and -axes 
and treat each axis independently. That is, design one SISO LQG regulator for 
each axis. The design objective is to reduce the thickness variations  and  
due to eccentricity and input thickness disturbances.

Start with the -axis. First specify the model components as transfer function 
objects.

% Hydraulic actuator (with input "u-x")
Hx = tf(2.4e8,[1 72 90^2],'inputname','u-x')

Hx s( ) 2.4 108×

s2 72s 902
+ +

-------------------------------------=

Fix s( ) 104

s 0.05+
--------------------=

Fex s( ) 3 104×   s

s2 0.125s 62
+ +

------------------------------------------=

gx 10 6–
=

Hy s( ) 7.8 108×

s2 71s 882
+ +

-------------------------------------=

Fiy s( ) 2 104×
s 0.05+
--------------------=

Fey s( ) 105  s

s2 0.19s 9.42
+ +

--------------------------------------------=

gy 0.5 10 6–×=

x y

δx δy

x
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% Input thickness/hardness disturbance model
Fix = tf(1e4,[1 0.05],'inputn','w-ix')

% Rolling eccentricity model
Fex = tf([3e4 0],[1 0.125 6^2],'inputn','w-ex')

% Gain from force to thickness gap
gx = 1e-6;

Next build the open-loop model shown in Figure 10-1 above. You could use the 
function connect for this purpose, but it is easier to build this model by 
elementary append and series connections.

% I/O map from inputs to forces f1 and f2
Px = append([ss(Hx) Fex],Fix)

% Add static gain from f1,f2 to outputs ”x-gap” and ”x-force” 
Px = [-gx gx;1 1] * Px

% Give names to the outputs:
set(Px,'outputn',{'x-gap' 'x-force'})

Note:   To obtain minimal state-space realizations, always convert transfer 
function models to state space before connecting them. Combining transfer 
functions and then converting to state space may produce nonminimal 
state-space models.

The variable Px now contains an open-loop state-space model complete with 
input and output names.

Px.inputname

ans = 
    'u-x'
    'w-ex'
    'w-ix'

Px.outputname
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ans = 
    'x-gap'
    'x-force'

The second output 'x-force' is the rolling force measurement. The LQG 
regulator will use this measurement to drive the hydraulic actuator and reduce 
disturbance-induced thickness variations .

The LQG design involves two steps:

1 Design a full-state-feedback gain that minimizes an LQ performance 
measure of the form

2 Design a Kalman filter that estimates the state vector given the force 
measurements 'x-force'.

The performance criterion  penalizes low and high frequencies equally. 
Because low-frequency variations are of primary concern, eliminate the 
high-frequency content of  with the low-pass filter  and use the 
filtered value in the LQ performance criterion.

lpf = tf(30,[1 30])

% Connect low-pass filter to first output of Px
Pxdes = append(lpf,1) * Px
set(Pxdes,'outputn',{'x-gap*' 'x-force'})

% Design the state-feedback gain using LQRY and q=1, r=1e-4
kx = lqry(Pxdes(1,1),1,1e-4)

δx

J ux( ) qδx
2 rux

2
+

 
 
 

td
0

∞

∫=

J ux( )

δx 30 s 30+( )⁄
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Note:  lqry expects all inputs to be commands and all outputs to be 
measurements. Here the command 'u-x' and the measurement 'x-gap*' 
(filtered gap) are the first input and first output of Pxdes. Hence, use the 
syntax Pxdes(1,1) to specify just the I/O relation between 'u-x' and 
'x-gap*'.

Next, design the Kalman estimator with the function kalman. The process noise

has unit covariance by construction. Set the measurement noise covariance to 
1000 to limit the high frequency gain, and keep only the measured output 
'x-force' for estimator design.

estx = kalman(Pxdes(2,:),eye(2),1000)

Finally, connect the state-feedback gain kx and state estimator estx to form 
the LQG regulator.

Regx = lqgreg(estx,kx)

This completes the LQG design for the -axis.

Let’s look at the regulator Bode response between 0.1 and 1000 rad/sec.

wx
wex

wix

=

x



10 Design Case Studies

10-38

bode(Regx,{0.1 1000})

The phase response has an interesting physical interpretation. First, consider 
an increase in input thickness. This low-frequency disturbance boosts both 
output thickness and rolling force. Because the regulator phase is 
approximately 0o at low frequencies, the feedback loop then adequately reacts 
by increasing the hydraulic force to offset the thickness increase. Now consider 
the effect of eccentricity. Eccentricity causes fluctuations in the roll gap (gap 
between the rolling cylinders). When the roll gap is minimal, the rolling force 
increases and the beam thickness diminishes. The hydraulic force must then 
be reduced (negative force feedback) to restore the desired thickness. This is 
exactly what the LQG regulator does as its phase drops to -180o near the 
natural frequency of the eccentricity disturbance (6 rad/sec).

Next, compare the open- and closed-loop responses from disturbance to 
thickness gap. Use feedback to close the loop. To help specify the feedback 
connection, look at the I/O names of the plant Px and regulator Regx.

Px.inputname
ans = 
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    'u-x'
    'w-ex'
    'w-ix'
 
Regx.outputname
ans = 
    'u-x'
 
Px.outputname
ans = 
    'x-gap'
    'x-force'
 
Regx.inputname
ans = 
    'x-force'

This indicates that you must connect the first input and second output of Px to 
the regulator.

clx = feedback(Px,Regx,1,2,+1) % Note: +1 for positive feedback

You are now ready to compare the open- and closed-loop Bode responses from 
disturbance to thickness gap.
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bode(Px(1,2:3),'--',clx(1,2:3),'-',{0.1 100})

The dashed lines show the open-loop response. Note that the peak gain of the 
eccentricity-to-gap response and the low-frequency gain of the 
input-thickness-to-gap response have been reduced by about 20 dB.

Finally, use lsim to simulate the open- and closed-loop time responses to the 
white noise inputs  and . Choose dt=0.01 as sampling period for the 
simulation, and derive equivalent discrete white noise inputs for this sampling 
rate.

dt = 0.01
t = 0:dt:50  % time samples

% Generate unit-covariance driving noise wx = [w-ex;w-ix].
% Equivalent discrete covariance is 1/dt
wx = sqrt(1/dt) * randn(2,length(t))

wex wix
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lsim(Px(1,2:3),':',clx(1,2:3),'-',wx,t)

The dotted lines correspond to the open-loop response. In this simulation, the 
LQG regulation reduces the peak thickness variation by a factor 4.

LQG Design for the y-Axis
The LQG design for the -axis (regulation of the  thickness) follows the exact 
same steps as for the -axis.

% Specify model components
Hy = tf(7.8e8,[1 71 88^2],'inputn','u-y') 
Fiy = tf(2e4,[1 0.05],'inputn','w-iy') 
Fey = tf([1e5 0],[1 0.19 9.4^2],'inputn','w-ey')
gy = 0.5e-6 % force-to-gap gain

% Build open-loop model
Py = append([ss(Hy) Fey],Fiy)
Py = [-gy gy;1 1] * Py
set(Py,'outputn',{'y-gap' 'y-force'})

y y
x
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% State-feedback gain design
Pydes = append(lpf,1) * Py % Add low-freq. weigthing
set(Pydes,'outputn',{'y-gap*' 'y-force'})
ky = lqry(Pydes(1,1),1,1e-4)

% Kalman estimator design
esty = kalman(Pydes(2,:),eye(2),1e3)

% Form SISO LQG regulator for y-axis and close the loop
Regy = lqgreg(esty,ky)
cly = feedback(Py,Regy,1,2,+1)

Compare the open- and closed-loop response to the white noise input 
disturbances.

dt = 0.01
t = 0:dt:50
wy = sqrt(1/dt) * randn(2,length(t))
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lsim(Py(1,2:3),':',cly(1,2:3),'-',wy,t)

The dotted lines correspond to the open-loop response. The simulation results 
are comparable to those for the -axis.

Cross-Coupling Between Axes
The /  thickness regulation, is a MIMO problem. So far you have treated 
each axis separately and closed one SISO loop at a time. This design is valid as 
long as the two axes are fairly decoupled. Unfortunately, this rolling mill 
process exhibits some degree of cross-coupling between axes. Physically, an 
increase in hydraulic force along the -axis compresses the material, which in 
turn boosts the repelling force on the -axis cylinders. The result is an increase 
in -thickness and an equivalent (relative) decrease in hydraulic force along 
the -axis. 

x

x y

x
y

y
y
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The coupling between axes is as follows.

Figure 10-2:  Coupling between the x- and y-axes

Accordingly, the thickness gaps and rolling forces are related to the outputs 
 of the - and -axis models by

wex

wix

uy

wey

wiy

δx

gxy

gy

ux

+

+

+

+

+

–

fx

fy

δy

+

gyx

gx

–

x-axis

model

y-axis

model

gxy 0.1=

gyx 0.4=

δx fx ..., , x y
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Let’s see how the previous “decoupled” LQG design fares when cross-coupling 
is taken into account. To build the two-axes model shown in Figure 10-2, 
append the models Px and Py for the - and -axes.

P = append(Px,Py)

For convenience, reorder the inputs and outputs so that the commands and 
thickness gaps appear first.

P = P([1 3 2 4],[1 4 2 3 5 6])
P.outputname

ans = 
    'x-gap'
    'y-gap'
    'x-force'
    'y-force'

Finally, place the cross-coupling matrix in series with the outputs.

gxy = 0.1; gyx = 0.4;
CCmat = [eye(2) [0 gyx*gx;gxy*gy 0] ; zeros(2) [1 -gyx;-gxy 1]]
Pc = CCmat * P
Pc.outputname = P.outputname

To simulate the closed-loop response, also form the closed-loop model by

feedin = 1:2  % first two inputs of Pc are the commands
feedout = 3:4 % last two outputs of Pc are the measurements
cl = feedback(Pc,append(Regx,Regy),feedin,feedout,+1)

You are now ready to simulate the open- and closed-loop responses to the 
driving white noises wx (for the -axis) and wy (for the -axis).

wxy = [wx ; wy]

δx

δy

fx

fy

1 0 0 gyxgx

0 1 gxygy 0

0 0 1 gyx–

0 0 gxy– 1

 

δx

δy

fx

fy

=

cross-coupling matrix

            

x y

x y
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lsim(Pc(1:2,3:6),':',cl(1:2,3:6),'-',wxy,t)

The response reveals a severe deterioration in regulation performance along 
the -axis (the peak thickness variation is about four times larger than in the 
simulation without cross-coupling). Hence, designing for one loop at a time is 
inadequate for this level of cross-coupling, and you must perform a joint-axis 
MIMO design to correctly handle coupling effects.

MIMO LQG Design
Start with the complete two-axis state-space model Pc derived above. The 
model inputs and outputs are

Pc.inputname

ans = 
    'u-x'
    'u-y'
    'w-ex'
    'w-ix'

x
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    'w_ey'
    'w_iy'

P.outputname

ans = 
    'x-gap'
    'y-gap'
    'x-force'
    'y-force'

As earlier, add low-pass filters in series with the 'x-gap' and 'y-gap' outputs 
to penalize only low-frequency thickness variations.

Pdes = append(lpf,lpf,eye(2)) * Pc
Pdes.outputn = Pc.outputn

Next, design the LQ gain and state estimator as before (there are now two 
commands and two measurements).

k = lqry(Pdes(1:2,1:2),eye(2),1e-4*eye(2)) % LQ gain
est = kalman(Pdes(3:4,:),eye(4),1e3*eye(2))  % Kalman estimator

RegMIMO = lqgreg(est,k)  % form MIMO LQG regulator

The resulting LQG regulator RegMIMO has two inputs and two outputs.

RegMIMO.inputname

ans = 
    'x-force'
    'y-force'

RegMIMO.outputname

ans = 
    'u-x'
    'u-y'

Plot its singular value response (principal gains).
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sigma(RegMIMO)

Next, plot the open- and closed-loop time responses to the white noise inputs 
(using the MIMO LQG regulator for feedback).

% Form the closed-loop model
cl = feedback(Pc,RegMIMO,1:2,3:4,+1);

% Simulate with lsim using same noise inputs
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lsim(Pc(1:2,3:6),':',cl(1:2,3:6),'-',wxy,t)

The MIMO design is a clear improvement over the separate SISO designs for 
each axis. In particular, the level of /  thickness variation is now comparable 
to that obtained in the decoupled case. This example illustrates the benefits of 
direct MIMO design for multivariable systems.

x y
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Kalman Filtering
This final case study illustrates the use of the Control System Toolbox for 
Kalman filter design and simulation. Both steady-state and time-varying 
Kalman filters are considered.

Consider the discrete plant

with additive Gaussian noise  on the input  and data

A = [1.1269   -0.4940    0.1129
     1.0000         0         0
          0    1.0000         0];

B = [-0.3832
      0.5919
      0.5191];

C = [1 0 0]; 

Our goal is to design a Kalman filter that estimates the output  given the 
inputs  and the noisy output measurements

where  is some Gaussian white noise. 

Discrete Kalman Filter
The equations of the steady-state Kalman filter for this problem are given as 
follows.

Measurement update

Time update

x n 1+[ ] Ax n[ ] B u n[ ] w n[ ]+( )+=

y n[ ] Cx n[ ]=

w n[ ] u n[ ]

y n[ ]
u n[ ]

yv n[ ] Cx n[ ] v n[ ]+=

v n[ ]

x̂ n n[ ] x̂ n n 1–[ ] M yv n[ ] Cx̂ n n 1–[ ]–( )+=

x̂ n 1 n+[ ] Ax̂ n n[ ] Bu n[ ]+=
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In these equations:

•  is the estimate of  given past measurements up to 

•  is the updated estimate based on the last measurement 

Given the current estimate , the time update predicts the state value at 
the next sample  (one-step-ahead predictor). The measurement update 
then adjusts this prediction based on the new measurement . The 
correction term is a function of the innovation, that is, the discrepancy.

between the measured and predicted values of . The innovation gain 
 is chosen to minimize the steady-state covariance of the estimation error 

given the noise covariances

You can combine the time and measurement update equations into one 
state-space model (the Kalman filter).

This filter generates an optimal estimate  of . Note that the filter 
state is .

Steady-State Design
You can design the steady-state Kalman filter described above with the 
function kalman. First specify the plant model with the process noise.

This is done by

% Note: set sample time to -1 to mark model as discrete
Plant = ss(A,[B B],C,0,-1,'inputname',{'u' 'w'},...

x̂ n n 1–[ ] x n[ ] yv n 1–[ ]
x̂ n n[ ] yv n[ ]

x̂ n n[ ]
n 1+

yv n 1+[ ]

yv n 1+[ ] Cx̂ n 1+ n[ ]– C x n 1+[ ] x̂ n 1+ n[ ]–( )=

y n 1+[ ]
M

E w n[ ]w n[ ]T( ) Q ,= E v n[ ]v n[ ]T( ) R=

x̂ n 1 n+[ ] A I MC–( ) x̂ n n 1–[ ] B AM
u n[ ]
yv n[ ]

+=

ŷ n n[ ] C I MC–( ) x̂ n n 1–[ ] CM yv n[ ]+=

ŷ n n[ ] y n[ ]
x̂ n n 1–[ ]

x n 1+[ ] Ax n[ ] Bu n[ ] Bw n[ ]++=       (state equation)
y n[ ] Cx n[ ]=       (measurement equation)
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                          'outputname','y');

Assuming that , you can now design the discrete Kalman filter by

Q = 1; R = 1;
[kalmf,L,P,M] = kalman(Plant,Q,R);

This returns a state-space model kalmf of the filter as well as the innovation 
gain

M

M =
   3.7980e-01
   8.1732e-02
  -2.5704e-01

The inputs of kalmf are  and , and its outputs are the plant output and 
state estimates  and . 

Because you are interested in the output estimate , keep only the first output 
of kalmf. Type

kalmf = kalmf(1,:);
kalmf
a = 
                      x1_e         x2_e         x3_e
         x1_e       0.7683       -0.494       0.1129
         x2_e       0.6202            0            0
         x3_e    -0.081732            1            0
 
 
b = 
                         u            y
         x1_e      -0.3832       0.3586

Q R 1= =

u yv
ye ŷ n n[ ]= x̂ n n[ ]

kalmf

Kalman filter

u

x̂ n n[ ]yv

ye

ye
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         x2_e       0.5919       0.3798
         x3_e       0.5191     0.081732
 
 
c = 
                      x1_e         x2_e         x3_e
          y_e       0.6202            0            0
 
 
d = 
                         u            y
          y_e            0       0.3798
 
I/O groups:                            
      Group name      I/O    Channel(s)
      KnownInput       I         1     
     Measurement       I         2     
    OutputEstimate     O         1     
                                       
Sampling time: unspecified
Discrete-time model.

To see how the filter works, generate some input data and random noise and 
compare the filtered response  with the true response . You can either 
generate each response separately, or generate both together. To simulate each 
response separately, use lsim with the plant alone first, and then with the 
plant and filter hooked up together. The joint simulation alternative is detailed 
next.

The block diagram below shows how to generate both true and filtered outputs.

ye y

Plant

Kalman
filtery

u

Process noise Sensor noise

y

yv
ye
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You can construct a state-space model of this block diagram with the functions 
parallel and feedback. First build a complete plant model with  as 
inputs and  and  (measurements) as outputs.

a = A;
b = [B B 0*B];
c = [C;C];
d = [0 0 0;0 0 1];
P = ss(a,b,c,d,-1,'inputname',{'u' 'w' 'v'},...

'outputname',{'y' 'yv'});

Then use parallel to form the following parallel connection.

sys = parallel(P,kalmf,1,1,[],[])

Finally, close the sensor loop by connecting the plant output  to the filter 
input  with positive feedback.

% Close loop around input #4 and output #2
SimModel = feedback(sys,1,4,2,1)
% Delete yv from I/O list
SimModel = SimModel([1 3],[1 2 3])

The resulting simulation model has  as inputs and  as outputs.

SimModel.inputname

ans = 
    'w'

u w v, ,
y yv

P

Kalman
filter

u

y
v

w

yv

yv

ye

yv
yv

w v u, , y ye,
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    'v'
    'u'

SimModel.outputname

ans = 
    'y'
    'y_e'

You are now ready to simulate the filter behavior. Generate a sinusoidal input 
 and process and measurement noise vectors  and .

t = [0:100]';
u = sin(t/5);

n = length(t)
randn('seed',0)
w = sqrt(Q)*randn(n,1);
v = sqrt(R)*randn(n,1);

Now simulate with lsim.

[out,x] = lsim(SimModel,[w,v,u]);

y = out(:,1);   % true response
ye = out(:,2);  % filtered response
yv = y + v;     % measured response

and compare the true and filtered responses graphically.

subplot(211), plot(t,y,'--',t,ye,'-'), 
xlabel('No. of samples'), ylabel('Output')
title('Kalman filter response')
subplot(212), plot(t,y-yv,'-.',t,y-ye,'-'),

u w v
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xlabel('No. of samples'), ylabel('Error')

The first plot shows the true response  (dashed line) and the filtered output 
 (solid line). The second plot compares the measurement error (dash-dot) 

with the estimation error (solid). This plot shows that the noise level has been 
significantly reduced. This is confirmed by the following error covariance 
computations.

MeasErr = y-yv;
MeasErrCov = sum(MeasErr.*MeasErr)/length(MeasErr);
EstErr = y-ye;
EstErrCov = sum(EstErr.*EstErr)/length(EstErr);

The error covariance before filtering (measurement error) is

MeasErrCov
 
MeasErrCov =
    1.1138

while the error covariance after filtering (estimation error) is only

y
ye



Kalman Filtering

10-57

EstErrCov
 
EstErrCov =
    0.2722

Time-Varying Kalman Filter
The time-varying Kalman filter is a generalization of the steady-state filter for 
time-varying systems or LTI systems with nonstationary noise covariance. 
Given the plant state and measurement equations

the time-varying Kalman filter is given by the recursions

Measurement update

Time update

with  and  as defined on page 10-50, and in the following.

x n 1+[ ] Ax n[ ] Bu n[ ] Gw n[ ]++=

yv n[ ] Cx n[ ] v n[ ]+=

x̂ n n[ ] x̂ n n 1–[ ] M n[ ] yv n[ ] Cx̂ n n 1–[ ]–( )+=

M n[ ] P n n 1–[ ]CT R n[ ] CP n n 1–[ ]CT
+( )

1–
=

P n n[ ] I M n[ ]C–( ) P n n 1–[ ]=

x̂ n 1 n+[ ] Ax̂ n n[ ] Bu n[ ]+=

P n 1 n+[ ] AP n n[ ]AT GQ n[ ]GT
+=

x̂ n n 1–[ ] x̂ n n[ ]

Q n[ ] E w n[ ]w n[ ]T( )=

R n[ ] E v n[ ]v n[ ]T( )=

P n n[ ] E x n[ ] x n n[ ]–{ } x n[ ] x n n[ ]–{ }T( )=

P n n 1–[ ] E x n[ ] x n n 1–[ ]–{ } x n[ ] x n n 1–[ ]–{ }T( )=
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For simplicity, we have dropped the subscripts indicating the time dependence 
of the state-space matrices.

Given initial conditions  and , you can iterate these equations to 
perform the filtering. Note that you must update both the state estimates 

 and error covariance matrices  at each time sample.

Time-Varying Design
Although the Control System Toolbox does not offer specific commands to 
perform time-varying Kalman filtering, it is easy to implement the filter 
recursions in MATLAB. This section shows how to do this for the stationary 
plant considered above.

First generate noisy output measurements

% Use process noise w and measurement noise v generated above
sys = ss(A,B,C,0,-1);
y = lsim(sys,u+w);   % w = process noise
yv = y + v;          % v = measurement noise

Given the initial conditions

you can implement the time-varying filter with the following for loop.

P = B*Q*B';         % Initial error covariance
x = zeros(3,1);     % Initial condition on the state
ye = zeros(length(t),1);
ycov = zeros(length(t),1); 

for i=1:length(t)
  % Measurement update
  Mn = P*C'/(C*P*C'+R);
  x = x + Mn*(yv(i)-C*x);   % x[n|n]
  P = (eye(3)-Mn*C)*P;     % P[n|n]

  ye(i) = C*x;
  errcov(i) = C*P*C';

  % Time update

x 1 0[ ] P 1 0[ ]

x n .[ ] P n .[ ]

x 1 0[ ] 0 ,= P 1 0[ ] BQBT
=
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  x = A*x + B*u(i);        % x[n+1|n]
  P = A*P*A' + B*Q*B';     % P[n+1|n]
end

You can now compare the true and estimated output graphically.

subplot(211), plot(t,y,'--',t,ye,'-')
title('Time-varying Kalman filter response')
xlabel('No. of samples'), ylabel('Output')
subplot(212), plot(t,y-yv,'-.',t,y-ye,'-')
xlabel('No. of samples'), ylabel('Output')

The first plot shows the true response  (dashed line) and the filtered response 
 (solid line). The second plot compares the measurement error (dash-dot) 

with the estimation error (solid).

The time-varying filter also estimates the covariance errcov of the estimation 
error  at each sample. Plot it to see if your filter reached steady state (as 
you expect with stationary input noise).

subplot(211)

y
ye

y ye–
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plot(t,errcov), ylabel('Error covar')

From this covariance plot, you can see that the output covariance did indeed 
reach a steady state in about five samples. From then on, your time-varying 
filter has the same performance as the steady-state version.

Compare with the estimation error covariance derived from the experimental 
data. Type

EstErr = y-ye;
EstErrCov = sum(EstErr.*EstErr)/length(EstErr)

EstErrCov =
    0.2718

This value is smaller than the theoretical value errcov and close to the value 
obtained for the steady-state design.

Finally, note that the final value  and the steady-state value  of the 
innovation gain matrix coincide.

Mn, M

M n[ ] M
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Mn =
    0.3798
    0.0817
   -0.2570

M =
    0.3798
    0.0817
   -0.2570

References
[1] Grimble, M.J., Robust Industrial Control: Optimal Design Approach for 
Polynomial Systems, Prentice Hall, 1994, p. 261 and pp. 443-456.
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When working with low-order SISO models (less than five states), computers 
are usually quite forgiving and insensitive to numerical problems. You 
generally won’t encounter any numerical difficulties and MATLAB will give 
you accurate answers regardless of the model or conversion method you choose. 
For high order SISO models and MIMO models, however, the finite-precision 
arithmetic of a computer is not so forgiving and you must exercise caution.

In general, to get a numerically accurate answer from a computer, you need:

• A well-conditioned problem

• An algorithm that is numerically stable in finite-precision arithmetic

• A good software implementation of the algorithm

A problem is said to be well-conditioned if small changes in the data cause only 
small corresponding changes in the solution. If small changes in the data have 
the potential to induce large changes in the solution, the problem is said to be 
ill-conditioned. An algorithm is numerically stable if it does not introduce any 
more sensitivity to perturbation than is already inherent in the problem. Many 
numerical linear algebra algorithms can be shown to be backward stable; i.e., 
the computed solution can be shown to be (near) the exact solution of a slightly 
perturbed original problem. The solution of a slightly perturbed original 
problem will be close to the true solution if the problem is well-conditioned.

Thus, a stable algorithm cannot be expected to solve an ill-conditioned problem 
any more accurately than the data warrant, but an unstable algorithm can 
produce poor solutions even to well-conditioned problems. For further details 
and references to the literature see [5].

While most of the tools in the Control System Toolbox use reliable algorithms, 
some of the tools do not use stable algorithms and some solve ill-conditioned 
problems. These unreliable tools work quite well on some problems (low-order 
systems) but can encounter numerical difficulties, often severe, when pushed 
on higher-order problems. These tools are provided because:

• They are quite useful for low-order systems, which form the bulk of 
real-world engineering problems.

• Many control engineers think in terms of these tools.

• A more reliable alternative tool is usually available in this toolbox.

• They are convenient for pedagogical purposes.
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At the same time, it is important to appreciate the limitations of computer 
analyses. By following a few guidelines, you can avoid certain tools and models 
when they are likely to get you into trouble. The following sections try to 
illustrate, through examples, some of the numerical pitfalls to be avoided. We 
also encourage you to get the most out of the good algorithms by ensuring, if 
possible, that your models give rise to problems that are well-conditioned.
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Conditioning and Numerical Stability
Two of the key concepts in numerical analysis are the conditioning of problems 
and the stability of algorithms.

Conditioning
Consider the linear system  given by

A =
0.7800 0.5630
0.9130 0.6590

b =
0.2170
0.2540

The true solution is x = [1, –1]' and you can calculate it approximately using 
MATLAB.

x = A\b
x =

 1.0000
–1.0000

format long, x
x =

 0.99999999991008
–0.99999999987542

Of course, in real problems you almost never have the luxury of knowing the 
true solution. This problem is very ill-conditioned. To see this, add a small 
perturbation to A

E =
 0.0010  0.0010
–0.0020 –0.0010

and solve the perturbed system 

xe = (A+E)\b
xe =

–5.0000
 7.3085

Ax b=

A E+( )x b=
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Notice how much the small change in the data is magnified in the solution. 

One way to measure the magnification factor is by means of the quantity

called the condition number of  with respect to inversion. The condition 
number determines the loss in precision due to roundoff errors in Gaussian 
elimination and can be used to estimate the accuracy of results obtained from 
matrix inversion and linear equation solution. It arises naturally in 
perturbation theories that compare the perturbed solution  with the 
true solution .

In MATLAB, the function cond calculates the condition number in 2-norm. 
cond(A) is the ratio of the largest singular value of A to the smallest. Try it for 
the example above. The usual rule is that the exponent log10(cond(A)) on the 
condition number indicates the number of decimal places that the computer 
can lose to roundoff errors.

IEEE standard double precision numbers have about 16 decimal digits of 
accuracy, so if a matrix has a condition number of 1010, you can expect only six 
digits to be accurate in the answer. If the condition number is much greater 
than 1/sqrt(eps), caution is advised for subsequent computations. For IEEE 
arithmetic, the machine precision, eps, is about -16, and 1/sqrt(eps) 
= 8.

Another important aspect of conditioning is that, in general, residuals are 
reliable indicators of accuracy only if the problem is well-conditioned. To 
illustrate, try computing the residual vector  for the two candidate 
solutions x = [0.999 –1.001]' and x = [0.341 –0.087]'. Notice that the 
second, while clearly a much less accurate solution, gives a far smaller 
residual. The conclusion is that residuals are unreliable indicators of relative 
solution accuracy for ill-conditioned problems. This is a good reason to be 
concerned with computing or estimating accurately the condition of your 
problem.

Another simple example of an ill-conditioned problem is the -by-  matrix 
with ones on the first upper-diagonal.

A = diag(ones(1,n–1),1);

This matrix has  eigenvalues at 0. Now consider a small perturbation of the 
data consisting of adding the number  to the first element in the last ( th) 

A  A 1–

A

A E+( ) 1– b
A 1– b

2.2 10×
6.7 10×

r Ax b–=

n n

n
2 n– n
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row of A. This perturbed matrix has n distinct eigenvalues  with 
. Thus, you can see that this small perturbation in the 

data has been magnified by a factor on the order of  to result in a rather 
large perturbation in the solution (the eigenvalues of A). Further details and 
related examples are to be found in [7].

It is important to realize that a matrix can be ill-conditioned with respect to 
inversion but have a well-conditioned eigenproblem, and vice versa. For 
example, consider an upper triangular matrix of ones (zeros below the 
diagonal) given by

A = triu(ones(n));

This matrix is ill-conditioned with respect to its eigenproblem (try small 
perturbations in A(n,1) for, say, n=20), but is well-conditioned with respect to 
inversion (check its condition number). On the other hand, the matrix

has a well-conditioned eigenproblem, but is ill-conditioned with respect to 
inversion for small .

Numerical Stability
Numerical stability is somewhat more difficult to illustrate meaningfully. 
Consult the references in [5], [6], and [7] for further details. Here is one small 
example to illustrate the difference between stability and conditioning.

Gaussian elimination with no pivoting for solving the linear system  is 
known to be numerically unstable. Consider

All computations are carried out in three-significant-figure decimal arithmetic. 
The true answer  is approximately

λ1 ... λn, ,
λk 1 2⁄  j2πk n⁄( )exp=

2n

A 1 1
1 1 δ+

=

δ

Ax b=

A 0.001 1.000
1.000 1.000–

= b 1.000
0.000

=

x A 1– b=

x 0.999
0.999

=
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Using row 1 as the pivot row (i.e., subtracting 1000 times row 1 from row 2) you 
arrive at the equivalent triangular system.

Note that the coefficient multiplying  in the second equation should be 
, but because of roundoff, becomes . As a result, the second 

equation yields , a good approximation, but now back-substitution 
in the first equation 

yields . This extremely bad approximation of  is the result of 
numerical instability. The problem itself can be shown to be quite 
well-conditioned. Of course, MATLAB implements Gaussian elimination with 
pivoting.

0.001 1.000
0 1000–

x1

x2

1.000
1000–

=

x2
1001– 1000–

x2 1.000=

0.001x1 1.000 1.000( ) 1.000( )–=

x1 0.000= x1
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Choice of LTI Model
Now turn to the implications of the results in the last section on the linear 
modeling techniques used for control engineering. The Control System Toolbox 
includes the following types of LTI models that are applicable to discussions of 
computational reliability:

• State space

• Transfer function, polynomial form

• Transfer function, factored zero-pole-gain form

The following subsections show that state space is most preferable for 
numerical computations.

State Space
The state-space representation is the most reliable LTI model to use for 
computer analysis. This is one of the reasons for the popularity of “modern” 
state-space control theory. Stable computer algorithms for eigenvalues, 
frequency response, time response, and other properties of the  
quadruple are known [5] and implemented in this toolbox. The state-space 
model is also the most natural model in MATLAB's matrix environment. 

Even with state-space models, however, accurate results are not guaranteed, 
because of the problems of finite-word-length computer arithmetic discussed in 
the last section. A well-conditioned problem is usually a prerequisite for 
obtaining accurate results and makes it important to have reasonable scaling 
of the data. Scaling is discussed further in the “Scaling” section later in this 
chapter.

Transfer Function
Transfer function models, when expressed in terms of expanded polynomials, 
tend to be inherently ill-conditioned representations of LTI systems. For 
systems of order greater than 10, or with very large/small polynomial 
coefficients, difficulties can be encountered with functions like roots, conv, 
bode, step, or conversion functions like ss or zpk.

A B C D, , ,( )
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A major difficulty is the extreme sensitivity of the roots of a polynomial to its 
coefficients. This example is adapted from Wilkinson, [6] as an illustration. 
Consider the transfer function

The  matrix of the companion realization of  is 

Despite the benign looking poles of the system (at –1,–2,..., –20) you are faced 
with a rather large range in the elements of , from 1 to . But 
the difficulties don’t stop here. Suppose the coefficient of  in the transfer 
function (or ) is perturbed from 210 to  ( ). 
Then, computed on a VAX (IEEE arithmetic has enough mantissa for only 

), the poles of the perturbed transfer function (equivalently, the 
eigenvalues of ) are

eig(A)'

ans =

Columns 1 through 7
–19.9998 –19.0019 –17.9916 –17.0217 –15.9594 –15.0516 –13.9504

Columns 8 through 14
–13.0369 –11.9805 –11.0081 –9.9976 –9.0005 –7.9999 –7.0000

Columns 15 through 20
–6.0000 –5.0000 –4.0000 –3.0000 –2.0000 –1.0000

The problem here is not roundoff. Rather, high-order polynomials are simply 
intrinsically very sensitive, even when the zeros are well separated. In this 
case, a relative perturbation of the order of  induced relative 
perturbations of the order of  in some roots. But some of the roots changed 

H s( ) 1
s 1+( ) s 2+( )... s 20+( )

------------------------------------------------------------- 1

s20 210s19 ... 20!+ + +
-----------------------------------------------------------= =

A H s( )

A

0 1 0 ... 0
0 0 1 ... 0
: : . . :
0 0 ... . 1
20!– . ... . 210–

=

A 20! 2.4 1018×≈
s19

A n n,( ) 210 2 23–
+ 2 23– 1.2 10 7–×≈

n 17=
A

10 9–

10 2–
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very little. This is true in general. Different roots have different sensitivities to 
different perturbations. Computed roots may then be quite meaningless for a 
polynomial, particularly high-order, with imprecisely known coefficients.

Finding all the roots of a polynomial (equivalently, the poles of a transfer 
function or the eigenvalues of a matrix in controllable or observable canonical 
form) is often an intrinsically sensitive problem. For a clear and detailed 
treatment of the subject, including the tricky numerical problem of deflation, 
consult [6]. 

It is therefore preferable to work with the factored form of polynomials when 
available. To compute a state-space model of the transfer function  
defined above, for example, you could expand the denominator of , convert 
the transfer function model to state space, and extract the state-space data by

H1 = tf(1,poly(1:20))
H1ss = ss(H1)
[a1,b1,c1] = ssdata(H1)

However, you should rather keep the denominator in factored form and work 
with the zero-pole-gain representation of .

H2 = zpk([],1:20,1)
H2ss = ss(H2)
[a2,b2,c2] = ssdata(H2)

Indeed, the resulting state matrix a2 is better conditioned.

[cond(a1) cond(a2)]

ans =
   2.7681e+03   8.8753e+01

and the conversion from zero-pole-gain to state space incurs no loss of accuracy 
in the poles.

format long e
[sort(eig(a1)) sort(eig(a2))]

ans =
     9.999999999998792e-01     1.000000000000000e+00
     2.000000000001984e+00     2.000000000000000e+00
     3.000000000475623e+00     3.000000000000000e+00
     3.999999981263996e+00     4.000000000000000e+00

H s( )
H

H s( )
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     5.000000270433721e+00     5.000000000000000e+00
     5.999998194359617e+00     6.000000000000000e+00
     7.000004542844700e+00     7.000000000000000e+00
     8.000013753274901e+00     8.000000000000000e+00
     8.999848908317270e+00     9.000000000000000e+00
     1.000059459550623e+01     1.000000000000000e+01
     1.099854678336595e+01     1.100000000000000e+01
     1.200255822210095e+01     1.200000000000000e+01
     1.299647702454549e+01     1.300000000000000e+01
     1.400406940833612e+01     1.400000000000000e+01
     1.499604787386921e+01     1.500000000000000e+01
     1.600304396718421e+01     1.600000000000000e+01
     1.699828695210055e+01     1.700000000000000e+01
     1.800062935148728e+01     1.800000000000000e+01
     1.899986934359322e+01     1.900000000000000e+01
     2.000001082693916e+01     2.000000000000000e+01

There is another difficulty with transfer function models when realized in 
state-space form with ss. They may give rise to badly conditioned eigenvector 
matrices, even if the eigenvalues are well separated. For example, consider the 
normal matrix

A = [5 4 1 1
4 5 1 1
1 1 4 2
1 1 2 4]

Its eigenvectors and eigenvalues are given as follows.

[v,d] = eig(A)

v =
    0.7071   –0.0000   –0.3162    0.6325
   –0.7071    0.0000   –0.3162    0.6325
    0.0000    0.7071    0.6325    0.3162
   –0.0000   –0.7071    0.6325    0.3162
 
d =
    1.0000         0         0         0
         0    2.0000         0         0
         0         0    5.0000         0
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         0         0         0   10.0000

The condition number (with respect to inversion) of the eigenvector matrix is

cond(v)

ans =
1.000

Now convert a state-space model with the above A matrix to transfer function 
form, and back again to state-space form.

b = [1 ; 1 ; 0 ; –1];
c = [0 0 2 1];
H = tf(ss(A,b,c,0));  % transfer function
[Ac,bc,cc] = ssdata(H) % convert back to state space

The new A matrix is

Ac = 
   18.0000   –6.0625    2.8125   –1.5625
   16.0000         0         0         0
         0    4.0000         0         0
         0         0    1.0000         0

Note that Ac is not a standard companion matrix and has already been 
balanced as part of the ss conversion (see ssbal for details).

Note also that the eigenvectors have changed.

[vc,dc] = eig(Ac)

vc =
   –0.5017    0.2353    0.0510    0.0109
   –0.8026    0.7531    0.4077    0.1741
   –0.3211    0.6025    0.8154    0.6963
   –0.0321    0.1205    0.4077    0.6963
 
dc = 
   10.0000         0         0         0
         0    5.0000         0         0
         0         0    2.0000         0
         0         0         0    1.0000
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The condition number of the new eigenvector matrix

cond(vc)

ans =
34.5825

is thirty times larger.

The phenomenon illustrated above is not unusual. Matrices in companion form 
or controllable/observable canonical form (like Ac) typically have 
worse-conditioned eigensystems than matrices in general state-space form 
(like A). This means that their eigenvalues and eigenvectors are more sensitive 
to perturbation. The problem generally gets far worse for higher-order systems. 
Working with high-order transfer function models and converting them back 
and forth to state space is numerically risky.

In summary, the main numerical problems to be aware of in dealing with 
transfer function models (and hence, calculations involving polynomials) are:

• The potentially large range of numbers leads to ill-conditioned problems, 
especially when such models are linked together giving high-order 
polynomials.

• The pole locations are very sensitive to the coefficients of the denominator 
polynomial.

• The balanced companion form produced by ss, while better than the 
standard companion form, often results in ill-conditioned eigenproblems, 
especially with higher-order systems.

The above statements hold even for systems with distinct poles, but are 
particularly relevant when poles are multiple.

Zero-Pole-Gain Models
The third major representation used for LTI models in MATLAB is the 
factored, or zero-pole-gain (ZPK) representation. It is sometimes very 
convenient to describe a model in this way although most major design 
methodologies tend to be oriented towards either transfer functions or 
state-space.

In contrast to polynomials, the ZPK representation of systems can be more 
reliable. At the very least, the ZPK representation tends to avoid the 
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extraordinary arithmetic range difficulties of polynomial coefficients, as 
illustrated in the “Transfer Function” section. The transformation from state 
space to zero-pole-gain is stable, although the handling of infinite zeros can 
sometimes be tricky, and repeated roots can cause problems.

If possible, avoid repeated switching between different model representations. 
As discussed in the previous sections, when transformations between models 
are not numerically stable, roundoff errors are amplified.
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Scaling
State space is the preferred model for LTI systems, especially with higher order 
models. Even with state-space models, however, accurate results are not 
guaranteed, because of the finite-word-length arithmetic of the computer. A 
well-conditioned problem is usually a prerequisite for obtaining accurate 
results.

You should generally normalize or scale the  matrices of a system 
to improve their conditioning. An example of a poorly scaled problem might be 
a dynamic system where two states in the state vector have units of light years 
and millimeters. You would expect the  matrix to contain both very large and 
very small numbers. Matrices containing numbers widely spread in value are 
often poorly conditioned both with respect to inversion and with respect to their 
eigenproblems, and inaccurate results can ensue.

Normalization also allows meaningful statements to be made about the degree 
of controllability and observability of the various inputs and outputs.

A set of  matrices can be normalized using diagonal scaling 
matrices , , and  to scale u, x, and y. 

so the normalized system is

where

Choose the diagonal scaling matrices according to some appropriate 
normalization procedure. One criterion is to choose the maximum range of each 
of the input, state, and output variables. This method originated in the days of 
analog simulation computers when , , and  were forced to be between 

 Volts. A second method is to form scaling matrices where the diagonal 
entries are the smallest deviations that are significant to each variable. An 

A B C D, , ,( )

A

A B C D, , ,( )
Nu Nx Ny

u Nuun= x Nxxn= y Nyyn=

x·n Anxn Bnun+=

yn Cnxn Dnun+=

An Nx
1– ANx=     Bn Nx

1– BNu=

Cn Ny
1– CNx=     Dn Ny

1– DNu=

un xn yn
10±
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excellent discussion of scaling is given in the introduction to the LINPACK 
Users’ Guide, [1].

Choose scaling based upon physical insight to the problem at hand. If you 
choose not to scale, and for many small problems scaling is not necessary, be 
aware that this choice affects the accuracy of your answers.

Finally, note that the function ssbal performs automatic scaling of the state 
vector. Specifically, it seeks to minimize the norm of

by using diagonal scaling matrices . Such diagonal scaling is an economical 
way to compress the numerical range and improve the conditioning of 
subsequent state-space computations.

Nx
1– ANx    Nx

1– B

CNx    0

Nx
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Summary
This chapter has described numerous things that can go wrong when 
performing numerical computations. You won’t encounter most of these 
difficulties when you solve practical lower-order problems. The problems 
described here pertain to all computer analysis packages. MATLAB has some 
of the best algorithms available, and, where possible, notifies you when there 
are difficulties. The important points to remember are:

• State-space models are, in general, the most reliable models for subsequent 
computations.

• Scaling model data can improve the accuracy of your results.

• Numerical computing is a tricky business, and virtually all computer tools 
can fail under certain conditions.
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Introduction
The LTI Viewer is a graphical user interface (GUI) that supports ten plot 
responses, including step, impulse, Bode, Nyquist, Nichols, zero/pole, sigma 
(singular values), lsim, and initial plots. The latter two are only available at 
the initialization of the LTI Viewer; see ltiview for more information.

The LTI Viewer is configurable and can display up to six plot type and any 
number of models in a single viewer. In addition, you can display information 
specific to the response plots, such as peak response, gain and phase margins, 
and so on.

You can open the LTI Viewer by typing 

ltiview

at the MATLAB prompt. You can also open an LTI Viewer from the SISO 
Design Tool; see “SISO Design Tool” on page 3-1 for more information.

Note  Click on any of the plots of the LTI Viewer, shown below, to get help on 
selecting characteristics for the plot. Click on the menu bar to get help on its 
contents. Click on the right-click menus, also shown below, to get help on 
right-click menu features.
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The LTI Viewer and Right-Click Menus for SISO and MIMO/LTI Array Models. 
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LTI Viewer Menu Bar

Note  Click on File, Edit, Window, or Help on the menu bar pictured below 
to get help on the menu items.

This picture shows the LTI Viewer menu bar.

Tasks that you can perform using the LTI Viewer menu bar include:

• Importing and exporting models

• Printing plot responses

• Reconfiguring the Viewer (add or remove plot responses)

• Displaying critical values (peak responses, etc.) and markers on each plot

File

Note  Click on any of the items listed in the File menu pictured below to get 
help contents.

You can use the File menu to do the following:

• Open a new LTI Viewer
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• Import and export models

• Set plot preferences for all the plots generated by the Control System Toolbox

• Print response plots

• Close the LTI Viewer

New Viewer
Select this option to open a new LTI Viewer.

Import Using the LTI Browser
Import in the File menu opens the LTI Browser, shown below.

You can use the LTI Browser to import LTI models into the LTI Viewer.                                      

To import a model 

• Click on the desired model in the LTI Browser List. To perform multiple 
selections: 

a Hold the Control key and click on the names of nonadjacent models. 

b Hold the Shift key while clicking, to select a set of adjacent models.     
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• Press the OK or Apply Button 

Note that models must have identical numbers of inputs and outputs to be 
imported into a single LTI Viewer.

For importing, the LTI Browser lists only the LTI models in the main MATLAB 
workspace. 

Export Using the LTI Viewer Export Window
Export in the File menu opens the LTI Viewer Export window, shown below. 

The LTI Viewer Export window lists all the models with responses currently 
displayed in your LTI Viewer. You can export models back to the MATLAB 
workspace or to disk. In the latter case, the Control System Toolbox saves the 
files as MAT-files. 
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If you select Export to Disk, this window appears.

Choose a name for your model(s) and press Save. Your models are stored in a 
MAT-file.

Toolbox Preferences 
Select Toolbox Preferences to open the Toolbox Preferences editor, which sets 
preferences for all response objects in the Control System Toolbox, including 
the viewer.

Print 
Print sends the entire LTI Viewer window to your printer.

Print to Figure
Print to Figure sends a picture of the selected system to a new figure window. 
Note that this new figure is a MATLAB figure window and not an LTI Viewer. 

Close 
Close closes the LTI Viewer.

Edit

Note  Click on any of the items listed in the Edit menu pictured below to get 
help contents.
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The Edit menu contains the following options:

• Plot Configurations — Opens the Plot Confi gurations window

• Systems — The Systems menu item has two selections: 

- Refresh updates imported models to reflect any changes made in the 
MATLAB workspace since you imported them.

- Delete opens the LTI Browser for System Deletion.

• Line Styles — Opens the Line Styles editor 

• Viewer Preferences — Opens the Viewer Prefer ences editor

Plot Configurations Window — Selecting Response Types
Plot Configuration under the Edit menu opens the Plot Configurations 
window.

Use this window to select the number and kind of response plots you want in a 
single instance of the LTI Viewer. You can plot up to six response plots in a 
single viewer. Click the radio button to the upper left of the configuration you 
want the viewer to use.
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You can select among eight response types for each plot in the viewer. These 
are the available response types:

• Step 

• Impulse

• Bode — Plots the Bode magnitude and phase

• Bode mag. — Plots the Bode magnitude only

• Nyquist

• Nichols

• Sigma

• Pole/Zero map

Systems
The Systems menu item has two selections, Refresh and Delete. This figure 
shows the two options.

Refresh updates imported models to reflect any changes made in the MATLAB 
workspace since you imported them. Delete opens the LTI Browser for System 
Deletion.
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Delete Using the LTI Browser for System Deletion
Delete under Systems in the Edit menu opens the LTI Browser, shown below.

To delete a model 

• Click on the desired model in the LTI Browser List. To perform multiple 
selections: 

a Click and drag over several variables in the list. 

b Hold the Control key and click on individual variables. 

c Hold the Shift key while clicking, to select a range.     
• Press the OK or Apply Button 
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Line Styles Editor
Select Line Styles under the Edit menu to open the Line Styles editor, shown 
below.

The Line Styles editor is particularly useful when you have multiple systems 
imported. You can use it change line colors, add and rearrange markers, and 
alter line styes (solid, dashed, and so on).

The Linestyle Preferences window allows you to customize the appearance of 
the response plots by specifying: 

• The line property used to distinguish different systems, inputs, or outputs

• The order in which these line properties are applied 

Each LTI Viewer has its own Linestyle Preferences window.

Setting Preferences. You can use the “Distinguish by” matrix to specify the line 
property that will vary throughout the response plots. You can group multiple 
plot curves by systems, inputs, outputs, or channels (individual input/output 
relationships). Note that the Line Styles editor uses radio buttons, which 
means that you can only assign one property setting for each grouping (system, 
input, etc.).
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Ordering Properties. The Order field allows you to change the default property 
order used when applying the different line properties. You can reorder the 
colors, markers, and linestyles (e.g., solid or dashed).

To change any of the property orders, press the up or down arrow button to the 
left of the associated property list to move the selected property up or down in 
the list 

Viewer Preferences
Viewer Preferences opens the LTI Viewer Preferences editor, which you can 
use to set response plot defaults for the LTI Viewer that is currently open.

For a complete description of the LTI Viewer Preference editor, as well as all 
the property and preference editors available in the Control System Toolbox, 
see “Custo mization” in the online Control System Toolbox documentation. To 
go directly to the LTI Viewer Preferences editor documentation, see “LTI 
Viewer Preferences” in the same document.

Window
Use the Window menu to select which of your MATLAB windows is active. 
This menu lists any window associated with MATLAB and the Control System 
Toolbox. The MATLAB Command Window is always listed first. 

Help
The Help menu links to this help file.
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Right-Click Menu for SISO Systems

Note  Click on items in the right-click menu pictured below for help contents.

This right-click menu appears when you have a SISO system imported into 
your LTI Viewer. If you have a MIMO system, or an LTI array containing 
multiple models, there are additional menu options. See “Right-Click Menus 
for MIMO Systems and LTI Arrays” on page 12-21 for more information.

You can use the right-click menus to perform the following tasks:

• Change the plot type in the viewer

• Select and deselect imported models for display

• Add or remove grid lines

• Zoom in on areas of plots

• Open the Property Editor
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Plot Type

Select which plot type you want to display. The LTI Viewer shows a check to 
mark which plot is currently displayed. These are the available options:

• Step — Step response

• Impulse — Impulse response

• Bode — Magnitude and phase plots

• Bode Mag. — Magnitude only

• Nyquist — Nyquist diagram

• Nichols — Nichols chart

• Sigma — Singular values plot

• Pole/Zero — Pole/Zero map

You cannot switch to Lsim or Initial. To access these options, use 'lsim' and 
'initial' flags when invoking the LTI Viewer. See ltiview for more 
information.
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Systems

Use Systems to select which of the imported systems to display. Selecting a 
system causes a check mark to appear beside the system. To deselect a system, 
select it again; the menu toggles between selected and deselected.

Characteristics
The Characteristics menu changes for each plot response type. The next 
sections describe the menu for each of the eight plot types.

Step Response
Step plots the model’s response to a step input.

You can display the following types of information in the step response:

• Peak Response — The largest deviation from the steady-state value of the 
step response

• Settling Time — The time required for the step response to decline and stay 
at 5% of its final value

• Rise Time — The time require for the step response to rise from 10% to 90% 
of its final value 

• Steady-State — The final value for the step response 
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Impulse Response
Impulse Response plots the model’s response to an impulse.

The LTI Viewer can display the following types of information in the impulse 
response:

• Peak Response — The maximum positive deviation from the steady-state 
value of the impulse response

• Settling Time — The time required for the step response to decline and stay 
at 5% of its final value

Bode Diagram
Bode plots the open-loop Bode phase and magnitude diagrams for the model.

The LTI Viewer can display the following types of information in the Bode 
diagram:

• Peak Response — The maximum value of the Bode magnitude plot over the 
specified region

• Stability Margins (min) — The minimum phase and gain margins. The gain 
margin is defined to the gain (in dB) when the phase first crosses -180°. The 
phase margin is the distance, in degrees, of the phase from -180° when the 
gain magnitude is 0 dB.

• Stability Margins (all) — Display all stability margins
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Bode Magnitude
Bode Magnitude plots the Bode magnitude diagram for the model.

The LTI Viewer can display the Peak Response, which is the maximum value 
of the Bode magnitude in decibels (dB), over the specified range of the diagram.

Nyquist Diagrams 
Nyquist plots the Nyquist diagram for the model.

The LTI Viewer can display the following types of information in the Nyquist 
diagram:

• Peak Response — The maximum value of the Nyquist diagram over the 
specified region

• Stability Margins — The gain and phase margins for the Nyquist diagram. 
The gain margin is the distance from the origin to the phase crossover of the 
Nyquist curve. The phase crossover is where the curve meets the real axis. 
The phase margin is the angle subtended by the real axis and the gain 
crossover on the circle of radius 1. 
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Nichols Charts
Nichols plots the Nichols Chart for the model.

The LTI Viewer can display the following types of information in the Nichols 
chart:

• Peak Response — The maximum value of the Nichols chart in the plotted 
region.

• Stability Margins — The gain and phase margins for the Nichols chart.

Sigma
Sigma plots the singular values for the model.

The LTI Viewer can display the Peak Response, which is the largest 
magnitude of the Sigma plot over the plotted region.

Pole/Zero
Pole/Zero plots the poles and zeros of the model with ‘x’ for poles and ‘o’ for 
zeros. There are no Characteristics available for pole-zero plots.
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Grid
The Grid command activates a grid appropriate to the plot in the region you 
select. 

Zoom
The Zoom command zooms in and out of the plot region selected. 

There are four options:

• In-X — Zoom in on the specified strip of the x axis.

• In-Y — Zoom in on the specified strip of the y axis.

• X-Y — Zoom in on the specified box region of the x and y axes.

• Out — Zoom out.

When you select In-X or In-Y, left-click the mouse to specify the region of the x 
or y axis that you want to zoom in on. Similarly, for the X-Y option, left-click 
and drag your mouse to create a rectangular region that you want to zoom in 
on. 

Out restores the previous appearance of the plot. Note that Out is grey when 
you have reached the limit of zooming out.
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Properties
Use Properties to open the Property Editor. This GUI allows you to customize 
labels, axes limits and units, grids and font styles, and response characteristics 
(e.g., rise time) for your plot.

For a full description of the Property Editor, see “Customizing Response Plot 
Properties” online in the Control System Toolbox documentation.
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Right-Click Menus for MIMO Systems and LTI Arrays
All of the menu options described in Right-Click Menu for SISO Systems hold 
when you have imported a MIMO model or LTI Array containing multiple 
models.

Note, however, that when you have a MIMO model or LTI array displayed, the 
right-click menus contain additional options: Axis Grouping and I/O selector. 
These features allow you to quickly reshuffle multiple plots in a single LTI 
Viewer

Note  Click on items in the right-click menu pictured below to get help 
contents.

.
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Array Selector
If you import an LTI array into your LTI Viewer, Array Selector appears as 
an option in the right-click menu. Selecting this option opens the Model 
Selector for LTI Arrays, shown below.

You can use this window to include or exclude models within the LTI array 
using various criteria. The following subsections discuss the features in turn.

Arrays
Select which LTI array for applying model selection options by using the 
Arrays pulldown list.

Selection Criteria 
There are two selection criteria. The default, Index into Dimensions, allows 
you to include or exclude specified indices of the LTI Array. Select systems from 
the Selection Criteria Setup and specify whether to show or hide the systems 
using the pulldown menu below the Setup lists.
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The second criterion is Bound on Characteristics. Selecting this options 
causes the Model Selector to reconfigure. The reconfigured window is shown 
below.

Use this option to select systems for inclusion or exclusion in your LTI Viewer 
based on their time response characteristics. The panel directly above the 
buttons describes how to set the inclusion or exclusion criteria based on which 
selection criteria you select from the reconfigured Selection Criteria Setup 
panel.

Axis Grouping
You can use Axis Grouping to change the grouping of MIMO system plots in 
your LTI Viewer. This picture shows the menu options.

There are four options:

• None — By default, there is no axis grouping. For example, if you display the 
step responses for a 3-input, 2- output system, there will be six plots in your 
LTI Viewer.
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• All — Groups all the responses into a single plot

• Inputs — Groups all the responses by inputs. For example, for a 3-input, 
2-output system, selecting Inputs reconfigures the viewer so that there are 3 
plots. Each plot contains two curves.

• Outputs — Groups all the responses by outputs. For example, for a 3-input, 
2-output system, selecting Inputs reconfigures the viewer so that there are 2 
plots. Each plot contains three curves.

I/O Selector
I/O Selector opens the I/O Selector window, shown below.

The I/O Selector window contains buttons corresponding to each I/O pair. In 
this example, there are 2 inputs and 3 outputs, so there are six buttons. By 
default, all the I/O pairs are selected. If you click on a button, that I/O pair 
alone is displayed in the LTI Viewer. The other buttons automatically deselect.

To select a column of inputs, click on the input name above the column. The 
names are U(1), U(2), and so on. The LTI Viewer displays the responses from 
the specified input to all the outputs.

To select a row of output, click on the output name to the left of the row. The 
names are Y(1), Y(2), and so on. The LTI Viewer displays the responses from 
all the inputs to the specified output. 

To reestablish the default setting, click [all]. The LTI Viewer displays all the 
I/O pairs.
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Status Panel
The Status Panel is located at the bottom of the LTI Viewer. It contains useful 
information about changes you have made to the LTI Viewer.
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Introduction
All the response plots that the Control System Toolbox creates have right-click 
menus available. The plots include the following:

• bode
• bodemag
• impulse

• initial 
• nichols
• nyquist
• pzmap
• sigma
• step

Note  Click on any of the items in the right-click menus, shown below, to get 
help on the feature.

Right-Click Menus for SISO and MIMO/LTI Array Models.

You can do the following using the right-click menus for response plots:

• Select and deselect imported systems

• Change plot characteristics

• Add and remove grid lines

• Zoom in and out of selected plot regions

• Open the Property Editor for the selected plot
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• In the MIMO/LTI array case:

- regroup the plots

- Select subsets of I/O pairs
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Right-Click Menus for SISO Systems
When you create a response plot for a SISO system, you have available a set of 
right-click menu options, which are described in the following sections.

Systems

Use Systems to select which of the imported systems to display. Selecting a 
system causes a check mark to appear beside the system. To deselect a system, 
select it again; the menu toggles between selected and deselected.

Characteristics
The Characteristics menu changes for each plot response type. This picture 
shows the options for a step response.

The following table lists the characteristics available for each response plot 
type.

Table 13-1:  Options Available from the Characteristics Menu

Function Characteristics

bode Peak Response

bodemag Peak Response

impulse Peak Response
Settling Time
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Grid

The Grid command activates a grid appropriate to the plot in the region you 
select. 

initial Peak Response

nichols Peak Response

nyquist Peak Response

pzmap None

sigma Peak Response

step Peak Response
Settling Time
Rise Time
Steady State

Table 13-1:  Options Available from the Characteristics Menu

Function Characteristics
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Zoom
The Zoom command zooms in and out of the plot region selected. 

There are four options:

• In-X — Zoom in on the specified strip of the x axis.

• In-Y — Zoom in on the specified strip of the y axis.

• X-Y — Zoom in on the specified box region of the x and y axes.

• Out — Zoom out.

When you select In-X or In-Y, left-click the mouse to specify the region of the x 
or y axis that you want to zoom in on. Similarly, for the X-Y option, left-click 
and drag your mouse to create a rectangular region that you want to zoom in 
on. 

Out restores the previous appearance of the plot. Note that Out is grey when 
you have reached the limit of zooming out.

Properties

Use Properties to open the Property Editor. This GUI allows you to customize 
labels, axes limits and units, grids and font styles, and response characteristics 
(e.g., rise time) for your plot.



Right-Click Menus for SISO Systems

13-7

For a full description of the Property Editor, see “Customizing Response Plot 
Properties” online in the Control System Toolbox documentation.
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Right-Click Menus for MIMO and LTI Arrays
All of the menu options described in “Right-Click Menus for SISO Systems” on 
page 13-4 hold when you have generated a response plot for a MIMO model or 
an LTI Array.

Note, however, that when you have a MIMO model or LTI array displayed, the 
right-click menus contain additional options: Axis Grouping and I/O selector. 
These features allow you to quickly reshuffle multiple plots in a single window.

Note  Click on items in the right-click menu pictured below to get help 
contents.

.

Axis Grouping
You can uses Axis Grouping to change the grouping of plots in a single plot 
window. This picture shows the menu options.

There are four options:
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• None — By default, there is no axis grouping. For example, if you display the 
step responses for a 3-input, 2- output system, there will be six plots in your 
window.

• All — Groups all the responses into a single plot

• Inputs — Groups all the responses by inputs. For example, for a 3-input, 
2-output system, selecting Inputs reconfigures the viewer so that there are 
3 plots. Each plot contains two curves.

• Outputs — Groups all the responses by outputs. For example, for a 3-input, 
2-output system, selecting Outputs reconfigures the viewer so that there are 
2 plots. Each plot contains three curves.

I/O Selector
I/O Selector opens the I/O Selector window, shown below.

The I/O Selector window contains buttons corresponding to each I/O pair. In 
this example, there are 2 inputs and 3 outputs, so there are six buttons. By 
default, all the I/O pairs are selected. If you click on a button, that I/O pair 
alone is displayed in the plot window. The other buttons automatically 
deselect.

To select a column of inputs, click on the input name above the column. The 
names are U(1), U(2), and so on. The plot window displays the responses from 
the specified input to all the outputs.

To select a row of output, click on the output name to the left of the row. The 
names are Y(1), Y(2), and so on. The plot window displays the responses from 
all the inputs to the specified output. 

To reestablish the default setting, click [all]. The plot window displays all the 
I/O pairs.
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Index

A
addition of LTI models 3-11

scalar 3-12
adjoint. See pertransposition
append 3-16, 5-28
array dimensions 5-7
array selector for LTI Viewer 14-22
arrays. See LTI arrays
axis grouping for LTI Viewer 14-23

B
balancing realizations 4-7
building LTI arrays 5-12

C
canonical realizations 4-7
cell array 2-10, 2-13
classical control 10-3, 10-20
closed loop. See feedback
concatenation, model 2-10

horizontal 3-16
LTI arrays 5-15
state-space model order, effects on 3-9
vertical 3-16

conditioning, state-space models 11-4
connection

feedback 10-12
parallel 3-12, 10-54
series 3-13, 10-15

constructor functions, LTI objects 2-4
continuous-time 4-2
conversion, model

automatic 2-40
between model types 2-39, 3-3
continuous to discrete (c2d) 3-20

discrete to continuous (d2c) 2-34, 3-20
with negative real poles 3-21

FRD model, to 2-39
resampling 3-26
SS model, to 2-39
state-space, to 2-40
TF model, to 2-39
ZPK model, to 2-39

covariance
error 10-56, 10-60

customizing plots 9-1
customizing subplots 9-10

D
d2d 3-26
delays

combining 2-51
discrete-time models 2-49
discretization 3-23
I/O 2-25, 2-42, 2-43
information, retrieving 2-51
input 2-25, 2-47
output 2-25, 2-42, 2-47
Padé approximation 2-51
supported functionality 2-42

delays input 2-42
deletion

parts of LTI arrays 5-23
parts of LTI models 3-9

denominator
property 2-27
specification 2-8, 2-10, 2-21
value 2-23

descriptor systems. See state-space models, 
descriptor
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design
classical 10-3, 10-20
Kalman estimator 10-36, 10-57
LQG 10-31
regulators 10-31
robustness 10-28
root locus 10-9, 10-24

digital filter
filt 2-22
specification 2-21

dimensions
array 5-7
I/O 5-7

discrete-time models 4-2
control design 10-20
Kalman estimator 10-50
resampling 3-26
See also LTI models

discretization 2-34, 3-20, 10-21
delay systems 3-23
first-order hold 3-22
matched poles/zeros 3-23
Tustin method 3-22
zero-order hold 3-20

dual. See transposition

E
error covariance 10-56, 10-60
extraction

LTI arrays, in 5-21
LTI models, in 3-5

F
feedback 10-12
feedthrough gain 2-27

filt 2-22
filtering. See Kalman estimator
first-order hold (FOH) 3-22

with delays 3-23
FRD (frequency response data) objects 2-3, 2-17

conversion to 2-39
frequencies

indexing by 3-7
referencing by 3-7

uses 2-3
frequency response 2-17

G
gain 2-11

feedthrough 2-27
property

LTI properties gain 2-27
gain margins 10-28
get 2-30
group. See I/O groups

H
hasdelay 2-51

I
I/O

concatenation 3-16
delays 2-25, 2-42, 2-43
dimensions 4-2

LTI arrays 5-7
groups 2-25

referencing models by group name 3-8
names 2-25, 2-35

conflicts, naming 3-4
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referencing models by 3-8
relation 3-5

I/O Selector for LTI Viewer 14-24
indexing into LTI arrays 5-20

single index access 5-20
inheritance 3-3
input 2-2

delays 2-25, 2-42, 2-47
groups 2-25
names 2-25
number of inputs 4-2

InputDelay. See delays
InputGroup 2-25, 2-26

conflicts, naming 3-4
See also I/O groups

InputName 2-32, 2-34
conflicts, naming 3-4
See also I/O names

inversion
model 3-13

ioDelayMatrix. See delay

K
Kalman

filtering 10-50
Kalman estimator

continuous 10-36
discrete 10-50
time-varying 10-57

L
LQG (linear quadratic-gaussian) method

continuous LQ regulator 10-36
cost function 10-36
design 10-31, 10-46

LQ-optimal gain 10-36
regulator 10-31

LTI (linear time-invariant) 2-2
LTI arrays 5-1

accessing models 5-20
analysis functions 5-29
array dimensions 5-7
building 5-15
building LTI arrays 5-12
building with rss 5-12
building with tf, zpk, ss, and frd 5-17
concatenation 5-15
conversion, model.See conversion
deleting parts of 5-23
dimensions, size, and shape 5-7
extracting subsystems 5-21
indexing into 5-20
interconnection functions 5-24
model dimensions 5-7
operations on 5-24

dimension requirements 5-26
special cases 5-26

reassigning parts of 5-22
size 5-7
stack 5-15

LTI models
addition 3-11

scalar 3-12
building 3-16
characteristics 4-2
concatenation

effects on model order 3-9
horizontal 3-16
vertical 3-16

continuous 4-2
conversion 2-39, 3-3

continuous/discrete 3-20
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 See also conversion, model
creating 2-8
discrete 2-19, 4-2
discretization, matched poles/zeros 3-23
empty 2-11, 4-2
functions, analysis 4-4
I/O group or channel name, referencing by 

3-8
interconnection functions 3-16
inversion 3-13
model data, accessing 2-23
modifying 3-5
multiplication 3-13
operations 3-1

precedence rules 3-3
See also operations

proper transfer function 4-2
resizing 3-9
subsystem, modifying 3-9
subtraction 3-12
type 4-2

LTI objects 2-25, 2-31
constructing 2-4
methods 2-4
properties. See LTI properties
See also LTI models

LTI properties 2-4, 2-25, 2-32
accessing property values (get) 2-30, 2-31
displaying properties 2-31
generic properties 2-25
I/O groups. See I/O, groups
I/O names. See I/O, names
inheritance 3-3
model-specific properties 2-26
online help (ltiprops) 2-25
property names 2-25, 2-29
property values 2-25, 2-30

setting 2-28
sample time 3-3
variable property 3-4

LTI Viewer 14-1
array selector 14-22
axis grouping 14-23
I/O Selector 14-24
right-click menu for MIMO systems and LTI 

arrays 14-21
LTI Viewer Preferences Editor 8-2

M
map, I/O 3-5
margins, gain and phase 10-28
methods 2-4
MIMO 2-2, 3-17
model building 3-16

feedback connection 10-12
parallel connection 3-12, 10-54
series connection 3-13, 10-15

model dynamics, function list 4-4
modeling. See model building
multiplication 3-13

scalar 3-13

N
Notes 2-26
numerator

property 2-27
specification 2-8, 2-10, 2-21
value 2-23

numerical stability 11-6
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O
object-oriented programming 2-4
objects. See LTI objects
operations on LTI models

addition 3-11
append 3-16
arithmetic 3-11
concatenation 2-10, 3-9, 3-16
extracting a subsystem 2-6
inversion 3-13
multiplication 3-13
overloaded 2-4
pertransposition 3-14
precedence 3-3
resizing 3-9
subsystem, extraction 3-5
subtraction 3-12
transposition 3-14

output 2-2
delays 2-25, 2-42, 2-47
groups 2-25
names 2-25
number of outputs 4-2

OutputDelay. See delays
OutputGroup 2-25, 2-26

group names, conflicts 3-4
See also I/O, groups

OutputName 2-32
conflicts, naming 3-4
 See also I/O, names

P
Padé approximation (pade) 2-51
parallel connection 3-12, 10-54
pertransposition 3-14
phase margins 10-28

plot customization 9-1
poles 2-12

property 2-27
precedence rules 2-5, 3-3
preferences and properties 6-2
proper transfer function 4-2
properties

sample time 3-3
variable 3-4

properties and preferences 6-2
properties. See LTI properties
Property Editor 9-3

R
realization

state coordinate transformation 4-7
realizations 4-7

balanced 4-7
canonical 4-7

regulation 10-31
resampling 3-26
response, I/O 3-5
right-click menu

MIMO response plots and LTI arrays 15-8
SISO response plots 15-4

robustness 10-28
root locus

design 10-9, 10-24
See also Root Locus Design GUI

rss

building an LTI array with 5-12

S
sample time 2-19, 2-25, 2-26, 2-33, 3-3

accessing 2-23
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resampling 3-26
setting 2-34
unspecified 2-26

scaling 11-15
series connection 3-13, 10-15
set 2-28
SISO 2-2, 4-2
SISO Design Tool

customizing plots 9-11
SISO Tool Preferences Editor 8-6
SS 3-14
ss 2-14
SS models 3-14
SS objects. See state-space models
stability

numerical 11-6
stack 5-15
state 2-14

matrix 2-27
names 2-27
transformation 4-7
vector 2-2

state-space models 2-2, 2-3, 11-8
balancing 4-7
conditioning 11-4
conversion to 2-39

See also conversion
descriptor 2-16, 2-23
matrices 2-14
model data 2-14
quick data retrieval 2-23
realizations 4-7
scaling 11-15
specification 2-14
ss 2-14
transfer functions of 2-39

subplot customization 9-10

subsystem 2-6, 3-5
subsystem operations on LTI models

subsystem, modifying 3-9
subtraction 3-12

T
Td. See delays
tf 2-8
TF objects. See transfer functions
tfdata

output, form of 2-23
time delays. See delays
time-varying Kalman filter 10-57
Toolbox Preferences Editor 6-2
totaldelay 2-51
transfer functions 2-2, 2-3, 11-8

constructing with rational expressions 2-9
conversion to 2-39
denominator 2-8
discrete-time 2-19, 2-21
DSP convention 2-21
filt 2-22
MIMO 2-10, 3-17
numerator 2-8
quick data retrieval 2-23
specification 2-8
static gain 2-11
tf 2-8
TF object, display for 2-9
variable property 2-27, 3-4

transposition 3-14
triangle approximation 3-22
Ts. See sample time
Tustin approximation 3-22

with frequency prewarping 3-23
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U
Userdata 2-26

V
variable property 3-4

Z
zero-order hold (ZOH) 3-20, 10-21

with delays 3-23
zero-pole-gain (ZPK) models 2-2, 2-3, 11-13

conversion to 2-39
MIMO 2-13, 3-17
quick data retrieval 2-23
specification 2-12
zpk 2-12

zeros 2-12
property 2-27

zpk 2-12
ZPK objects. See zero-pole-gain (ZPK) models
zpkdata

output, form of 2-23
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